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 Modal analysis. Dynamic Mode Decomposition.
e Synergia simulations.
e Results

> Transverse space charge modes.

> Parametric Landau damping.




Motivation

* Tools for modal analysis of beams simulated with particle tracking
codes are necessary.

> The popular method, Singular Value Decomposition, does not capture
modes dynamics.

> Dynamic Mode Decomposition works (provides damping/growing rates).

* The space charge modes in bunched beams are not fully understood.
> Comparison with existing analytical results.

> Modes properties in parametric regions inaccessible by analytical
approach.

> Numerical investigation of the Landau damping mechanism.

+ In the proximity of transverse coupling resonance we found a novel
damping mechanism.
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 Modal analysis. Dynamic Mode Decomposition.




Data from simulation

data sequence: X(q,ty),X(q,t,),....,X(q,ty_1)

Examples:

Ap

—= longitudinal plane distribution
p

X(q,t)=p(z,5,t), q=(z,8), 8=

X(q,t)EX<Z,6,t):f dxdyxp(x.y.z,0,t) horizontal dipole density

[ dxdyp(x,y,z,8,t)

Data can be stored as an MxN matrix:

g represent
. L points in
X(q,t)= the phase

: : Co. : space




Singular Value Decomposition

(aka Principal component analysis, Proper orthogonal decomposition, ...

N-1
XO

N—1
X(q,t)= X1

ql,Q2 Z X ql, t q2) covariance matrix

Cu,= Omum

The SVD singular vectors u_(q) diagonalize the covariance matrix.

For systems with no higher than second moment correlations the singular vectors
represent independent modes.

The singular value 6_ is a measure of the mode variance.

It makes sense for stationary systems.




Dynamic Mode Decomposition

P.J. Schmid, Journal of Fluid Mechanics, 656, 2010.
C.W. Rowley et al., Journal of Fluid Mechanics, 641, 2009.

- data sequence: X(q,t,),X(q,t,),...., X (q,ty)

* find a linear operator A such as:

X(q,ti)=AX(q,t,) for all k=1,N—1

 the eigenvalues and the eigenvectors of A describe the dynamics

Ag;(q)=w;9,(q)
X(tO):Zjajcpj:Zj wj
X(tk):AkX(to):Zj M?lpj:zj e—XjAtke—icojAtkwj:Zj e—Kjtke—ioojtkwj




Dynamic Mode Decomposition

DMD equation:

A size is MxM
X0 and X1 sizes are MxN

 The system might be overdetermined or underdetermined.
« A solution might not exist or there might be more than one solutions.




Dynamic Mode Decomposition

« DMD equation: AX =X, not a well defined problem

« DMD solution for finding A: least square fit
the problem is projected onto the subspace spanned by the Single Value
Decomposition modes.

A=UFU" = X -UFU'X,=0 = F=U'X,VX F isrankr
* y eigenvector of F in the SVD projected space

Fy=ny = Ap=uqg Wwhere ¢@=Uy is a DMD mode




Dynamic Mode Decomposition

* It finds the best (least square) approximation of a linear operator which
describes the data evolution in time.

* The eigenvectors of this operator are the dynamic modes.

 The eigenvalues of this operator provide the modes’ frequencies and
damping/growing rates.
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e Synergia simulations.




Synergia code

https://cdcvs.fnal.gov/redmine/projects/synergia2
« Single-particle physics
 direct symplectic tracking

 arbitrary-order polynomial maps

» Collective effects (single and multiple bunches)
« space charge (different solvers)

« wake fields (arbitrary wakes)
« Apertures (different shapes)

« Slip stacking

Typical number of macroparticles in realistic simulations is of order 10°-10°.
Large parallel computers are required for large problems.




Space charge modes simulations

Gaussian beams with equal transverse emittances
10 x OFORODO linear lattice
e 102 -10° macroparticles

3D space charge Poisson solver with open boundary conditions (Hockney)
« Beam initially excited with an approximate (guessed) mode shape f(z,9)

x> x+af(z;,9d;) a is the excitation amplitude

Store X(z,0, t ) at every turn X (z,é,to),X(z,é,tl),

_fdxdyxp(x,y,z,é,t)

X(z,5,t)= (2.5.0] dipole density
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 Results

> Transverse space charge modes.

>




Transverse space charge modes

Equation of motion (smooth approximation):
1
. 2 2
X+ X, =—
I 0 Qﬁ I m y

2
—Z

Fx(x,-—x

the space charge force is proportional
F.(z)cp(z)oce to the charge density

zi(t) =/, C0S ((x)o Q.t +1p,-) particles execute synchrotron oscillations

mode dependent

The simulations and the following results are not based on these equations.




Strong space charge limit

Analytical results, transverse modes Simulation
3

ﬂ\ 0 "7

z(rms units)

A. Burov, PRSTAB 12, 109901, 2009.
V. Balbekov. PRSTAB12, 124402, 20009.

f

 Modes shape depends only on the ] _
longitudinal coordinate z 23 - omutation

X,(2,0)=X,(2) Eay

z (rms units) z (rms units)




q..=0.5 maximum tune shift q.;=0
eff synchrotron tune

rotationally invariant harmonics
X, (z,8)=X.(r,0)=R(r)e"’

N N

m
X
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=
w0
=
=
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]

z (rms units) qeff_) 0

space charge harmonics

Xk(z’é):Xk(Z)




Mode 2 and mode 3

W TSN
sag- S5 192

2 c'

Oy e Eff_lz Qerr = eff_23
eal mag‘ real |mag

-2

2
qeff
|mag

u (rms units)

z (rms unlts}

breeal 'lr'?“lag real ‘lma ’

!e!_'q 7
1 ‘15; p

0 ] I H | iy !
real imag
-2B
—2

z (rms unlts}

u (rms units)

qeff:O
rotationally invariant harmonics
X, (z,8)=X,(r, E)):R(r)eik6
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Xk(z’é):Xk(Z)




Modes frequencies and shapes
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Tune versus the space charge Mode k shape overlap with the k

strength q.

space charge harmonic versus the
space charge strength q.



Landau damping

) 1.2 3 A. Macridin et al.,
Landau damping, modes 1, 2 and PRSTAB, 074402, 2015

 In the strong interaction regime the damping rate is proportional to k%/q’, k is the

mode number, q is the space charge parameter (agreement with A. Burov, PRSTAB 12,
109901, 2009)
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> Parametric Landau damping.




Damping is enhanced in the CR region

15 20

| | |
8 ) off-resonance
+ A coupling resonance

off-resonance

0.9

0.7

Coupling resonance, Q,0=Qy0

Mz
0.8 o
Vv

0.6

Nonlinear coupling resulting
from the term proportional
to x?y? in space charge
potential

Montague's resonance,
ZQX-ZQy=O

2 times larger damping at CR in strong space charge regime.

Why?




Conventional Landau damping mechanism

mode-particle coupling

 The mode energy
Is transferred to
the resonant
particles.

resonant
particles

 The resonant
particles tune
equal the coherent
tune Q..
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Landau damping off-resonance

6Q<Z:Jx9jy):

— XA, 0.05% particles Landau

- —XAJ, 0.2% particles damp|ng (LD)
— XA, 0.2% particles .

- ¥ responsible

particles

increase their

energy with

| time

=
!

(X AJ)/(Ne)

|
600
bunch tune footprint 0.41 0%(2 0.43

resonant particles

*

» Conventional LD mechanism.

 The tune of the LD responsible
particles is at the coherent tune.




Landau damping at coupling resonance, Q, =Q,

LD responsible particles = particles with a large increase in energy

0.32  The tune of most of
’ the LD responsible
particles is not in the
vicinity of coherent
tune. Why do these
particles absorb the
mode's energy?

The picture does not
fit the conventional

bunch tune footprint resonant particles LD paradigm.




Particles dynamics at coupling resonance

» Particles are trapped around the stable point
* Trapped particles properties:

. J;=J +J , constant of motion
¢ J=Id, oscillates around the stabled point with frequency ® Q,

« the trapping frequency ® Q. is particle dependent

Exercise:

H=

2
Dx
2

1
+=W,
2

stable point:  cos2(®;—P})=—

8

W, +w,

trapping frequency: Q.= (




Particles dynamics at coupling resonance

Synergia simulations

Poincare plots, J, vs @ -®_

 Most of the LD
responsible particles
are trapped in
resonance islands.

 Their actions
oscillates with
particle dependent
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Landau damping responsible particles

LD responsible particles = particles with a large increase in energy




Damping at coupling resonance

p(Qx),(arb. units)

resonant particles

Xt 0y Qo =0 Q) X =—2 w5 Qo 8 Qi 2, T, T i )X
Y- mode-particle coupling

LD responsible particles are trapped around the stable point J i € e 09 Qit




Parametric Landau damping

).(.l-'l‘(l)é(Qox_éQi)zxi:_Z(Dg (20)(6(21'(Zi3*]si3*]di)‘)_<

X.i+(0(2)Q(ZyJsi:Jdi>2X:_A<Z,Jsi))_<_B<Z:Jsi>Jdi)_<:

resonance condition:

« Ax coupling Q.=v—Q,
> conventional LD

. BJ x coupling Q.+Q,=v—Q,
> parametric LD
> mode-particle coupling modulated by Q,

> the tune of the LD resonant particles is not at the coherent tune




Parametric Landau damping

resonance conditions:

5

v-Q v-Q,

e conventional Landau damping :
Q.=v—0Q, LD responsible particles

The tune density of the LD
responsible particles

p(Q):Z 35(Q-Q)

Is peaked at v —QS

lp * h

X

h(Q ) (arb. units)
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e parametric Landau damping
Q+Q,=v—-Qq

The Q, shifted tune density of
the LD responsible particles

conventional LD, arametric LD
h = o0(0. — — P — ’
(Q)=23(Q+Q,=Q) A coupling BJ ¥ coupling

Is peaked at v —QS




Conclusions

Dynamic mode decomposition works well for modal analysis of accelerator
beams.

We employed Synergia and DMD techniques to analyze the transverse space
charge modes in bunched beams.

The SP modes change from the radially degenerate phase space harmonics
to momentum independent space charge harmonics with increasing the
space charge strength.

In the proximity of coupling resonance the simulations reveal a novel Landau
damping mechanism driven by the modulation of mode-particle interaction.

The amplitude oscillations of the trapped particles at the coupling resonance
enhance the Landau damping rate in bunched beams.







*o q=7.94, Q=0.01
+— q=11.50, Q =0.01
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Landau damping at coupling resonance
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