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What are neural networks?
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Avrtificial Neural Networks
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a heuron or node a feed-forward network

... many more architectures!

See, for example, the

website.
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How does this relate to “machine learning,” “artificial
intelligence,” and “deep learning™?

...what do these terms mean anyway?



L
Field Taxonomy (as of now...)

- Artificial Intelligence (Al)

- Concerned with enabling machines to exhibit aspects of human intelligence:
knowledge, learning, planning, reasoning, perception

- Narrow Al: focused on a task or similar set of tasks
- General Al: human-equivalent or greater performance on any task

- Machine Learning (ML)
- Enabling machines to complete tasks without being explicitly programmed

- Common tasks: Regression, Classification, Clustering, Dimensionality Deep Learning
Reduction

- Neural Networks (NNs)
- An approach within ML that uses many connected processing units
- Many different architectures and training techniques

e.g. Evolutionary Algorithms,
- Deep Learning (DL) Swarm Intelligence

- Learning hierarchical representations
- Right now, largely synonymous with deep (many-layered) NN approaches

e.g. Simplex, Gradient Descent

Note that these definitions are not rigid: there is a lot of fluidity in the field - Mathematical Optimization




How do neural networks “learn’’?



Basic Learning Paradigms

Unsupervised Learning

no labeled data =2 infer structure

b

\ Reinforcement Learning

interact with the environment = adjust behavior based on reaction

&y

Supervised Learning

learn known input/output pairs



Model Learning Basic Update Example
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How this all fits together for NNs

Machine - N Mathematical
Learning Hybrid optimization methods C)Ptimizaticm

Regression
Classification
Clustering

Learning
Paradigms™

training framework

*arguably broader than just “machine learning”

Hyperparameter tuning

Dimensionality reduction

Supervised learning o
: . training framework
Unsupervised learning
Reinforcement learning
Transfer learning

Neural

Network

(particular ML tool)

Gradient-based methods
Evolutionary algorithms
Swarm intelligence

weight and/or topology
adjustment



okay, but for many years we have tried using neural
networks and have had very little success. ..



... So, what is different now?

Increased computational capability
enables more complicated NN architectures
and faster training + larger data sets

code, and computing setups
(e.g. via cloud computing services)

Up-and-coming
advancements:
neuromorphic
hardware

New network architectures and
training paradigms, /
such as long short term memory
(LSTM) networks, neural turing %
machines, and generative adversarial
networks (GANs)

J. Schmidhuber

—— Momentum

—ws  Better theoretical
wws | Understanding of
' NNs and improved
- \//  optimization

A. Radford

Applications have driven a lot of
advancement (both algorithmic |
and practical/heuristic)

Google



Learning to Pivot with Adversarial Networks

Gilles Louppe Michael Kagan Kyle Cranmer
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... So, what is different now?

Increased computational capability
enables more complicated NN architectures
and faster training + larger data sets

GPUs

Up-and-coming
advancements:
neuromorphic
hardware

New network architectures and
training paradigms,

such as long short term memory
(LSTM) networks, neural turipd
machines, and geng

*= and improved
optimization
methods
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Let’s talk about accelerators. ..

htt://f.fnal.gov/gallery.html |




Interesting Technical Challenges

Complex/nonlinear dynamics

Many small, compounding errors

Many parameters to monitor and control

Interacting sub-systems

. . LBNL Visudlization Group | Fermilab
On-demand changes in operational state

Diagnostics sometimes limited or not put to
full use in control (e.g. images)

IHUI'S WILEY SERIES IN BEAM PHYSICS
10 AND ACCELERATORTECHNOLOGY

Time-varying/ non-stationary behavior

PHYSICS OF COLLECTIVE
BEAM INSTABILITIES

IN HIGH ENERGY
ACCELERATORS

Strong Incentives for Better Control

Cost of running -> Time/energy efficiency of control .
Cost of unintended down-time = Personnel cost, user time, bulk scientific output

Achieving performance needed for science goals and other applications

improving accelerator components and control both play a role

Uncertain, time-varying, nonlinear, many-parameter systems with continuous action spaces:
—> of great interest for research in control and machine learning
- lots of opportunity to both gain from and contribute to this area
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Cryo plant photo: A. Grassellino talk at IPAC ’1 7, (THPPA2)
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2015: 450 hand tuning hours, 250 dedicated!

= Lots of opportunity to speed operations and relieve operator load

Figure from D. Ratner’s presentation at the 8% Hard X-ray FEL Collaboration Meeting, 24-26 October 2016



We rely heavily on operators for day-to-day control tasks ...

Fermilab Control Room Photo:
Reidar Hahn, FNAL

... S0 what can we learn from them,

and what analogous techniques can we use?



Inspiration from Operators

iagnostic
Analysis

1

earning
Control

Fermilab Control Room Photo: Reidar Hahn, FNAL



Application Areas for Accelerators

- Online modeling = NN model

- Time delays = model predictive control + NN models

- Image-based diagnostics = convolutional or locally-connected NNs

- Frequent switching between operating conditions = NN policy

- Virtual diagnostics = NN model trained from intercepting diagnostics or simulation
- Encode an existing policy and/or adapt upon it > NN policy

- High-level assessment of machine or device states = NN process model, classifier

- Failure prediction / Anomaly detection = NN process model, classifier



Online Modeling One approach: faster modeling codes

- Simpler models (tradeoff with accuracy)

- Operators maintain a learned mental

. ; . - Parallelization and GPU-acceleration of existing codes
machine model: let’s supplement it

PARMILA X. Pang, PACI 3, MOPMA | 3
elegant .V. Pogorelov, et al., IPACI1 5, MOPMAO35

This can be very hard!
. Ideally: * Improvements in underlying modeling algorithms

- Fast-executing, but accurate enough to be useful

- Use measured inputs directly from machine (fractions of a second) —
- Combine a priori knowledge + learned parameters Another approach: machine |earning model
* Once trained, neural networks can execute quickly <+
- Applications » Train on slow, high-fidelity simulation results
- A tool for operators + virtual diagnostics - Also train on measured results

» Predictive control

- Help flag aberrant behavior An initial study involving this at FAST:

Yields a fast-executing model that can be used
operationally, but approximates behavior from A. L. Edelen, et al. NAPAC]6,TUPOAS |

high-fidelity simulations (e.g. PIC codes, LPA) one PARMELA run: ~20 min




Model Predictive Control (Prediction + Planning)

Immediate Past
(data sent to controller)

Measured disturbance

Previous control actions

Previous system output

—> Possible Future

(at each time step, iterate through the next
series of proposed actions until the

0—\_/\_. predicted system output is acceptable)

Actions proposed by controller
to achieve desired output

Predicted system output from model
given the proposed control actions

- 4 —
Desired
output Prediction Horizon (N,) .
Control Horizon (N )
| | | | | | | | | | | | | |
t-1 t t+1 t+N t+N

Basic concept:

|. Use a predictive model to assess the outcome of
possible future actions

2. Choose the best series of actions
3. Execute the first action
4. Gather next time step of data
5. Repeat
+ Measurements
Model
Proposed ¢ Process
Actions
Optimization | o | %r(i)teria I\\A(Zts? Actions f




Model Predictive Control (Prediction + Planning)

Reference Trajectory Measured Variables Nm previous measurements
yr(k)...yr(k+Np) uk=1)...u (k=N
¢ Y N, future time steps predicted

Optimization of Controlled Variable Trajectories

N_future time steps controlled
: Predicted Outputs

i Y, (9. y,(k+ N
v /

Cost Function Plant II\/IodeI Zli\;pl{wy [Yr (k +.i) — W (k + i)]}z
Constraints R (output variable targets)
Sollver Future Inputs chv NP 1{W [u (k 4+ l) U (k + i)]}z
' = u,j L% jref

u (k)...u (k+N —1)

(controllable variable targets)

u, (K 5 S W [+ ) —w k + i — DY
» Plant (movement size)




H Gun Water S L
Temperature Control for the RF Photoinjector at FAST N TTRRer ystem mayedt

< LCWreturn |
Resonant frequency controlled via temperature LCW supply |
<} heater + <
. . . . To1 control mixing chamber o TO6
PID control is undesirable in this case: valve (
* Long transport delays and thermal responses % pump
. . . . T02
* Recirculation leads to secondary impact of disturbances
. long
e Two controllable variables: heater power + valve aperture transport ——
delay
Applied model predictive control (MPC) with a neural network model .m o
trained on measured data: ~ 5x faster settling time + no large overshoot TN Tout
TCAV
Existing Feedforward/PID Controller Model Predictive Controller
43.5 -
° : —TCAV 4450 fi R B e e e e Lo\
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Note that the oscillations are largely due to the transport delays and water recirculation, rather than PID gains More info: A. L. Edelen. IEEETNS, voL. 63, no. 2, 2016
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Neural Network Model
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Why does this matter (for resonant frequency control in general)?

LLRF system will compensate for detuning by increasing forward power

But...
* Ability to do this bounded by the amplifier specs

* RF overhead adds to initial machine cost and footprint
 Using additional RF power =2 increasing operational cost
* Increased waste heat into cooling system > increasing operational cost

* If detuned beyond overhead =2 interrupt normal operations (beam not
properly accelerated or LLRF in frequency-tracking mode)



PIP-Il Injector Test RFQ
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. Mt
RFQ Detuning in CW Mode
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| |
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Example of uncontrolled detuning in CW mode under Pl frequency control in CW operation under a

a small change in cavity field (55 kV to 58 kV) small change in cavity field (55 kV to 58 kV)



What about a simple first-principles model, or a learned linear model?

Flow [gpm]

measured input data = first-principles model

35

30

.67 kHz RMS error

401 kHz max error

|

not good enough!

—— Wall supply flow
——Vane supply flow

120

100 -

RF power [kW]
B (2] o]
o o o

nN
o
T

o

4 ms pulse duration, |10 Hz rep rate

variety of valve and power settings

2 4 6 8 10
Time [h]

Wall supply temperature
—— Vane supply temperature |
~——— Air Temperature

Frequency shift [kHZ]

14

=
N

—
- (o)} (o0} o
T

N

T T T T T

Measured
- Simulated | -

J. Edelen,A. Edelen, et al. TNS 64, vol. 2, (2017)
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Neural Network Model
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Cavity Field [kV]

20_
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--wall
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Vane and wall valve settings
Average RF power
Water temperatures
Ambient temperature and humidity

Mean Absolute Prediction Error

346 Hz on the test set
98 Hz on the validation set
| 15 Hz across all sets

—
©
~

Chilled Supply Temperature [°C]
Flow Control Valve [% open]

—measured
—predicted
1 2 3 4 5

Resonant Frequency Shift [kHz]

Time Elapsed [hours] A. Edelen, et al., IPAC ’1 6, THPOY020
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. Action execution <
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* Designed to be portable + modular




Virtual Diagnostics
Predict what diagnostics might look like when they are unavailable or don’t exist

Real

values ' , - icti i ‘ i
By Online Real-time prediction of beam dynamics at various locations

from Model

machine
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Virtual Diagnostics
Predict what diagnostics might look like when they are unavailable or don’t exist

(fast a priori simulation, or fast ML model trained using simulation data)

Real

values IE_'

from
machine

— Real-time prediction of beam dynamics at various locations

e.g. GPU-accelerated
PARMILA at LANSCE

X. Pang, et al., PACI3, MOPMA| 3

X. Pang, IPACI5,WEXC2

X. Pang and L. Rybarcyk, CPC185, is. 3 (2014)
L. Rybarcyk, et al., IPACI 5, MOPWI033

L. Rybarcyk, HB20 16, WEPM4Y0 |
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Virtual Diagnostics
Predict what diagnostics might look like when they are unavailable or don’t exist

(fast a priori simulation, or fast ML model trained using simulation data)

Real

values ' , - icti i ‘ i
By Online Real-time prediction of beam dynamics at various locations

from Model

machine

(ML model)
Real
values Online Diagnostic
from ‘ Model Measurements

machine



Virtual Diagnostics
Predict what diagnostics might look like when they are unavailable or don’t exist

(fast a priori simulation, or fast ML model trained using simulation data)

Real
values - . - . _ .
— BV —. Real-time prediction of beam dynamics at various locations
from Model
machine
training
Real updates
values Online Diagnostic
—_—
from ‘ Model Measurements
machine
~ Diagnostic

" Prediction



Virtual Diagnostics
Predict what diagnostics might look like when they are unavailable or don’t exist

(fast a priori simulation, or fast ML model trained using simulation data)

Real
values ' . - . . .
By Online . Real-time prediction of beam dynamics at various locations
from Model
machine
(ML model)

Real

values . N . * moved to another part of machine

f ‘ : y N Ict * can’t operate in place (e.g. intercepting diagnostics)

© N
rom Model SAANENE o plocked for update time
machine

Diagnostic
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Machine learning applied to single-shot x-ray diagnostics in an XFEL

e Used archived data to learn correlation between fast and slow
diagnostics

* Looked at a variety of ML methods and different diagnostics

First Bunch X-ray Generation:
First Li Compressor \L% Magnetic Undulator
irst Linear ]
Acceleration (LINAC) ®en @ Second LINAC S Third LINAC _
Section (L1) /Y/W\ & Section (L2) / Section (L3) diagn
AMAAAAA = AWM BX' Secord Burch g AR -

Compressor

wo electron VWUV WWWW == 5c2) with Double w
bunches at Slotted Foil (DSF) ermier o ultra short high-energy
the cathode electron bunches producing
x-rays
200+ electron bunch and x-ray fast monitors
20+ variables recorded for each shot
From
undulator ‘
= | ZE— . H Spectrometer
Y Gas Monitor Slit (Optical/TOF)
RF Magnetic Detectors (GMDs)
Deflector Dipole
(DUMP)
Transverse
Cavity (XTCAV)

photon energy

=
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FIG. 4. Spectral shape prediction for a single pulse. (a) Histogram of agreements between the predicted and the measured

spectra for the test set using the 4 different models. (b-e¢) Examples of the measured and the predicted spectra using a neural
network to illustrate the accuracy for different agreement values.



Fault Prediction (Prognostics) + Anomaly Detection

Operations: Machine Protection:
faults, failures, or poor machine states preceded by tell-tale signs
- Detect deviations from normal operating Replacement Cycles:

conditions that may otherwise go notice predict time-to-failure based on real-time and

archived data



Using LSTM recurrent neural networks for detecting anomalous behavior of
LHC superconducting magnets

Maciej Wielgosz?, Andrzej Skoczen®, Matej Mertik®

“Faculty of Computer Science, Electronics and Telecommunications, AGH University of Science and Technology, Krakéw, Poland
b Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Krakéw, Poland
“The European Organization for Nuclear Research - CERN, CH-1211 Geneva 23 Switzerland

Aim: use a recurrent NN to identify quench
precursors in voltage time series.

- Predict future behavior, then classify it

Initial study with small data set:

* 425 quenches for 600 A magnets

* Used archived data from 2008 to 2016

* 16-32 previous values = predict a few time steps
ahead

“Some of the most dangerous malfunctions of
the magnets are quenches which occur when a
part of the superconducting cable becomes
normally-conducting.”

Normalized Voltage

0.0

0 Z.D 4‘0 6‘0 BAU 100
time [steps], single step: 0.4 s



Neural Network Policies and Reinforcement Learning

Actor-only Methods

* States, Rewards

Actor Actions 1 Process .

Actor is a

control policy

Maps states to actions

Reward provides training signal

*  Critic maps states or state/action pairs to
an estimate of long-term reward

* Could be a NN, tabular, etc.

» Critic provides training signal to actor

Without actor: use an optimization algorithm
with the critic

. J

Actor-Critic Methods

States
Rewards
- l
~
— Critic -’ Process
N _ -
/
Actions
— Actor

Actor

Simulated
Experience

Model

Input

N~

Actions

Rewards,
States

Process

__—

Model Learning

Can train on models first to get a
good initial solution before deployment

— > Actor

->©—-> Optimization

Teacher

]

Can use supervised learning to first approximate the

behavior of a

different control policy



B
Computer Vision + Neural Network-based RL

- Image diagnostics = would be nice to use directly,and some yield relatively complicated information

e.g. XTCAV at SLAC Pl an)
< < 50
5 2
Vertical X-ray =3 2 0
Horizontal ~ dipole > &
‘streak’ : "\ 3 i
] e— (7] -100
FEL undulator Energy 2 5.000
Tm‘ % < '
X-band Screen o =
_ RF deflector -50 0 50 0
) ; =i Longitudinal position (um) o 100(1:; G
D. Ratner, et al, PRSTAB18, 030704 (2015) A. Marinelli, et al., Nat. Commun. 6, 6369 (2015)

C. Behrens, et al., Nat. Commun. 5, 3762 (2014)

- Convolutional Neural Networks (CNNs) - very good at image processing

- Reinforcement Learning (RL) = can learn control policies from data

Why not try using image based diagnostics directly in learned control policies?
What’s a relatively simple test case to start with?



Initial Study at FAST/IOTA

Low Energy Beamline (~25 m) High Energy Beamline (~100 m)

e ————
g 8 a x < ~ o N
SE - = 2 3 988
Low Energy Transport
(0 someve) High Energy Transport & Test Line (40-300 MeV e’)
cc cec2 / k Cryomodule (CM) - 2.5 MeV p* Transport .
Spectrometer RFQ p~ Source

Mzgnet Low Energy

High Energy
Absorber

IOTA Ring Absorber

150 MeV e /2.5 MeV p~

figure from various FAST reports

Photocathode RF Gun Superconducting Capture Cavities

Initial work with J. Edelen and D. Edstrom, FNAL



Initial Study: Choose Gun Parameters Based on Laser Spot

Motivation:
Gun phase and solenoid strength tuned daily

Asymmetries in initial laser distribution result in
emittance asymmetries downstream

Would be nice to obtain optimal gun phase and
solenoid strength for a given initial laser
distribution automatically (and perhaps prioritize
X Or y emittance to minimize)

Example virtual cathode image
(10Aug. 2016)

Other perks:
PARMELA simulation based on survey data already in existence (J. Edelen)

Try out creating a fast NN modeling tool from slower-executing simulations



Initial Study: Choose Gun Parameters Based on Lase

Motivation:
> Gun phase and

> PAR —arready in existence (J. Edelen)
odeling tool from slower-executing simulations



Initial Study: Steps

Gather simulation data from PARMELA scans
Create a NN model

 Be certain that the necessary information can be extracted from
the image, gun phase, and solenoid strength

Train a RL controller using that model

Extension beyond simulation (tentative):

* Incorporate measured data into model and update controller

+ Carefully test on machine

/Y Network [~

Gun Phase

Solenoid Strength

Average Energy (E)

Emittances (g, &)

/ 1
24
Hybrid [~
Neural (>

Beta Function Values (Bx, By)

Alpha Function Values (o, , o)

v \A

Number of Particles (N,)

model inputs and outputs

Input

Model

Process

Model Learning

States

—P@—-b Optimization

Rewards

\/

Critic

/

/Actor

Environment

A

¥

Policy Learning

Actions



CNN Model: Simulation Data

PARMELA simulations from the gun up to the exit of CC2

2-D space charge routine

Scanned gun phase, solenoid strength, initial beam distribution

Two sets of data: 200 AN

T

Fine scans (steps of 5° phase, 5% sol. str.) for sims just past the gun 150

Coarse scans (steps of 10° phase, 10% sol. str.) for sims up through

CC2 1000

Normalized Emittance [mm-mrad]

(9
o
T

Simulated “virtual cathode images”

Going from VCI = initial beam distribution ok from prior work 33 0.6 58 10 15 T2 16

Solenoid Strength [nhorm]

Initial beam distribution = simulated VCI probably ok

Obviously very “well-behaved” examples

Simulation predictions after CC2. Dashed lines are x-
emittance, solid lines are y-emittance.
Caveat: doesn’t take into account coupling...later changed
NN setup to predict sigma matrix, and also used a 3D
space charge routine.

For normalized sol strength, 1 is the setting that produces a peak axial field of 1.8 kG



. e .IL
CNN Model: Two Representative Plots

Dashed lines are NN predictions and solid lines are simulation results
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Top-hat initial beam, 0° RF phase, after gun Asymmetric Gaussian initial beam, 0° RF phase, after CC2

For the gun data, all MAEs are between 0.4% and |.8% of the parameter ranges.
For the CC2 data, all MAEs are between 0.9% and 3.1% of the parameter ranges.

- Not bad for such a small training set



Work with C.Tennant and D. Douglas, JLab

Fast Switching Between Trajectories
76 BPMs, 57 dipoles, 53 quadrupoles

Traditional approach has never worked (linear response matrix)

High-voltage
power supply
(600 keV)

Electron gun

Recirculation
arc

Rely on one expert for steering tune-up \

Want to specify small offsets in trajectory at some locations

Didn’t initially have an up-to-date machine model available

Learn responses (NN model) from tune-up data and

dedicated study time:

dipole + quadrupole settings = predict BPMs
Train controller (NN policy) offline using NN model: ea dump
desired trajectory > dipole settings

(and penalize losses + large magnet settings)

Straight-ahead
beam dump

Test on machine: check to make sure model prediction
still accurate and try static controller (non-adaptive) \ ;“'
Recirculation

arc



. . . . (Very) Preliminary Results: I
Fast Switching Between Trajectories

Model Errors for BPMs:
Training Set: 0.07 mm MAE 0.09 mm STD
Validation Set:  0.08 mm MAE 0.07 mm STD

- 76 BPMs, 57 dipoles, 53 quadrupoles

- Traditional approach has never worked (linear response matrix) .. gar- 0.08 mm MAE  0.03 mm STD
- Rely on one expert for steering tune-u
4 . P . & . P . Controller: random initial states = on average
* Want to specify small offsets in trajectory at some locations within 0.2 mm of center immediately
- Didn’t initially have an up-to-date machine model available 6 .
— Measured
5L — Predicted
Modeling Example
Learn responses (NN model) from tune-up data and al (randomly selected a BPM
dedicated study time: a out of the data set to plot)
dipole + quadrupole settings = predict BPMs E 3
(*2]
=
Train controller (NN policy) offline using NN model: s
desired trajectory = dipole settings = 1t
(and penalize losses + large magnet settings) .
Test on machine: check to make sure model prediction -1}
still accurate and try static controller (non-adaptive)
_20 260 460 660 860 1000

Sample Number (Scanning over Magnet Settings)



(Very) Preliminary Results:

76 BPMs, 57 dipoles, 53 quadrupoles
Traditional approach has never worked (linear response matrix)

Rely on one expert for steering tune-up

VVant Similar Kind of Task: switching between FEL frequencies (in progress)

V197 > simulation study with CSU FEL (3 — 6 MeV e- beam = space charge)
—> use optimization iteration output from simulation to train NN model
Learn => train controller via interaction with NN model, then with simulation

dedel 5 given target wavelength: set quads, gun phase, solenoid strength, RF power

o X

5 2 ‘
Train controller ( ) offline using NN model: 3 N |

= | b 'vf vh |

- l Iy ¥ Ml . !
(and penalize losses + large magnet settings) : N, o [ a1 SR AR A

d " JIJ‘I.;'T’W ‘u!"ﬂ‘l '.A*‘J #"7'»4 IA ‘lﬁ]l l vﬁ f
Test on machine: check to make sure model prediction -1 Wor 5
still accurate and try static controller (non-adaptive) S |
-2

0 200 400 600 800 1000
Sample Number (Scanning over Magnet Settings)



*large enough parameter range and set of examples to *you can trust it

Final Notes: Some Practical Challenges generalize well and complete the task
Traini Simulation D
Need a amount of reliable™ data

(but not as much as is sometimes claimed in DL)

High-fidelity (e.g. PIC)

How representative of the real
—> time-consuming to run

machine behavior?
. Retention + availabilit
Training on Measured Data Input/output parameters need to : 4
. , of prior results:
translate directly to what’s on the - r
Undocumented manual changes : oy (optimize and throw the
: machine (quantitatively) L
(e.g. rotating a BPM) iterations away!)
.

Relevant-but-unlogged parameters
Availability of diagnostics Deployment
Initial training is on HPC systems = deployment is typically not*

Observed parameter range in archived data
- Execution on front-end: necessary speed + memory!?
- Subsequent training: on front-end or transfer to HPC?

J

Time on machine for characterization studies

(schedule + expense)
Software compatibility for older systems:

interface with machine + make use of modern ML software libraries

Ideal case:
- comprehensive, high-resolution data archive
- excellent log of manual changes /O for large amounts of data

_J \_ Y
* for now...




Final Notes: Funding Climate

DOE Office of Science FY18 Budget Request

17%

-43% I

Advanced Scientific Computing Research

-19% NN

the Office of Science budget. Its budget includes $347 million for DOE's

DOE supercomputers.

Advanced Scientific Computing Research stands out as the primary beneficiary of

contribution to the interagency Exascale Computing Initiative to deliver an
exascale-capable computing system by 2021. It would also increase support to two
of DOE's three Leadership Computing Facilities - at Oak Ridge and Argonne
National Laboratories. An additional increase would grow the Scientific Discovery
through Advanced Computing (SciDAC) program, which facilitates external use of

-18% (I

-18% (I

-13%

-17% I

Office of Science Total

1%
8% Biological & Environmental Research
- Nuclear Physics

= High Energy Physics

Fusion Energy Sciences

- Basic Energy Sciences

4%

Adv. Sci. Computing Re@

m % change FY17 Enacted to FY18 Request
% change FY16 Enacted to FY17 Enacted

American Institute of Physics | aip.org/fyi



Final Notes

- Neural networks are very flexible tools = far more powerful in recent years
* Mostly preliminary results so far, but making progress (+ more infrastructure in place)

- Lots of opportunities to use neural networks (and ML more broadly) to improve
accelerator performance on both existing and future machines

Some possible experiments at Fermilab:

* lon sources (MPC/RL)
+ Cryogenic system control (MPC/RL)

Fermilab has a strong presence in machine
learning (especially for neural networks/HEP)

. \ - Fermi Test Beam Facility (fast switching)
Lots of potential for fruitful collaborations - Muon Campus (virtual diagnostics, online modeling)
on the accelerator side - Phase space manipulations at FAST (fast switching)

= LBNL, SLAC, LANL, CERN all interested in
applying ML to accelerator modeling/controls Thanks for your attention!

\ 7







Final Notes: Fermilab has a strong presence in machine learning

(especially for DL/HEP)

See Fernanda Psihas New Perspectives 2017 talk
Ramping up HPC resources

Slack channel: hitps://hepmachinelearning slack.com

Journal Club meetings

Monthly Intro meetings
Website: http://machinelearning.fnal.gov/

CNN Applications for HEP
June 9th
10:30 AM, One West

s

NOVA has the first implementation of Convolutional Neural
Networks on a HEP result.

* Advantage from extracting features to learn from, rather than
learn from traditional reconstruction

* CVN PID represented an equivalent increase of 30% exposure

Ongoing program to incorporate deep learning for end-to-end
I’econstruction. A Convolutional Neural Network Neutrino Event Classifier

A. Aurisano, A. Radovic, D. Rocco, A. Himmel, M. D. Messier, E. Niner, G. Pawloski, F. Psihas, A. Sousa, P. Vahle
(Submitted on 5 Apr 2016 (v1), last revised 12 Aug 2016 (this version, v3))
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CNN Model: Simulation Data

PARMELA simulations from the gun up to the exit of CC2
2-D space charge routine

Scanned gun phase, solenoid strength, initial beam distribution

Two sets of data:
Fine scans (steps of 5° phase, 5% sol. str.) for sims just past the gun

Coarse scans (steps of 10° phase, 10% sol. str.) for sims up through
CC2

Parameter Ranges used for Model Training

Parameter Gun Data CC2 Data

Max Value Min Value Max Value Min Value
N, 5001 1015 5001 1004
€nx [M-rad] 2.50E-04 1.60E-06 4.00E-04 9.10E-07
€y [M-rad] 2.40E-04 1.60E-06 4.00E-04 8.50E-07
a, [rad] 14.1 -775.1 0.8 -149.8
a, [rad] 14.5 -797 0.7 -154.5
B, [m/rad] 950.4 7.90E-02 820.2 0.7
B, [m/rad] 896.8 8.40E-02 845.7 0.81
E [MeV] 4.6 3.2 47.2 42.8

Simulated “virtual cathode images”
Going from VCI = initial beam distribution ok from prior work
Initial beam distribution = simulated VCI probably ok

Obviously very “well-behaved” examples

Normalized Emittance [mm-mrad]

350

300+

250+

200+

150

100

50+

82 0.6 0.8 1.0 1.2 14 16
Solenoid Strength [norm]

Simulation predictions
after CC2. Dashed lines
are x-emittance, solid
lines are y-emittance.
Caveat: doesn’t take into
account coupling.. .later
changed NN setup to
predict sigma matrix,
and also used a 3D
space charge routine.

For normalized sol strength, 1 is the setting that produces a peak axial field of 1.8 kG



CNN Model: Performance

Parameter | Train. MAE | Train. STD | Val. MAE Val. STD Parameter | Train. MAE | Train.STD | Val. MAE | Val. STD
N, 69.5 79.8 70.7 75.7 0 103.7 141.2 123.3 176.8

€ nx 2.30E-06 3.50E-06 2.40E-06 3.20E-06 € x 1.00E-05 1.20E-05 1.20E-05 1.60E-05
Eny 2.30E-06 3.40E-06 2.40E-06 3.20E-06 Eny 1.00E-05 1.30E-05 1.20E-05 1.50E-05
a, 9 14.9 10.9 16 a, 3.4 6.6 3.1 5.9

a, 8.8 15.3 10.8 16.1 a, 3.4 6.6 3.1 5.9

B, 12.1 17.6 14.8 18.9 B, 16.3 33.5 14.7 27.8
B, 11.7 16.7 14.3 17.9 B, 16.4 33.6 14.8 27.5

E 4.90E-03 4.90E-03 5.50E-03 6.00E-03 E 4.00E-02 3.90E-02 4.60E-02 6.20E-02

Performance for the predictions after the gun

Performance for the predictions after CC2

For the gun data, all MAEs are between 0.4% and |.8% of the parameter ranges.
For the CC2 data, all MAEs are between 0.9% and 3.1% of the parameter ranges.

- Not bad for such a small training set




B
Present Status and Next Steps

- Improving the quality of the setup: - Expanding scope to phase space manipulations:
* Predicting the full sigma matrix - Specify a target sigma matrix
- More realistic initial distributions - Include quads after CC2, capture cavity phases, etc.
» Using 3D space charge routine + Collaborating with NIU:
+ Using locally-connected layers - RTFB transform is a possible application
- Switching to ASTRA - Alex Halavanau running simulation scans with NIU’s

: - newer model = more training data
( greater execution speed > more training data)

- Next steps (in tandem):
« Finish simulation study with present setup
- Extend to phase space manipulation simulation study
- Solidify plans for incorporating measured data and testing controller

+ Need to align available inputs/controllable variables (e.g. sigma matrix vs. info from emittance monitors, rotation of quads, etc.)

+ Also depends on run schedule, status of new emittance monitors, solid time with consistent setup, etc.

Also, if you have some other possible application and have or can easily obtain training data: don’t hesitate to get in touch!



MPC Benchmark Controller:Actions

Requested by Controller Actual Read-backs

o
o
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o
(3]

N
N e |

Measured Heater Power [kW]
(42

Could
optimize for
lower heater

power

ol
3]
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Requested Control Valve Position [% open]
Measured Control Valve Position [% open]
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Backpropagation

a; =f(Zijkxk+bj ) - f(wx+b)

al = f (Wlal—l + bl) — f(Zl)

Vectorized notation:

Layer-by layer:

a;  j* node activation

b;  j* node bias

f applied element-wise

2
i
Q
NS

7.C O f'(z")

2t = 41,0 | pl+l
=2 Wy; a; + by

= %, wii'f(z) + b

Wik j*"node in layer [, k"' node in | — 1
aC
Ny _ 1..Ni
J
sl = ac azllc+1 =y sl 9z
] k Z oz l k %k o0z Z
_ I+1 gl+1 ¢, L
=Yk Wij Ok f'(Z)

U NN NN NN NN NN NN NN NN NN NN SN NN NN NN NN NN SN NN SN SN BN SN NN NN SN BN NN SN BN NN SN BN NN NN BN NN SN BN NN BN RN BN RN R S R Ry,

For each training instance:
|I. Forward Pass:
Forl=1,23...N
zi=wla"1 +b
a'= f(z")
2. ‘Error’:
SNi=1,C O f'(zM)
3. Backward Pass:
For [ =Nl — I,Nl — 2, |
Sl = witiglt+t @f’(Zl)
4. Final Derivatives:
0C -1l aC _ ¢

N N N S N N NN N BN NN NN N RN NN NN N NN NN N NN NN NN NN NN NN BN RN BN NN RN BN R N S R



S FAST Gun Temperature Considerations
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In the resonance control framework

iteration start .
e e MPC calculation
. Np future time steps previous proposed actions
\ J
_ _ Prediction
* m previous measurements for each input :
i previous predicted proposed
g " parameters t+1, ..., t+N
11 . 7 (t m, -“’t 1, t) (t+1v ---:t+Np) ( P)
« “actions” are vane and wall flow valve | |/ O —
setings || a— il
neural network
i
predicted resonant frequency
(E+d, ... . 0*N)
Main Code |
Startup housekeeping Action Module + Optimization
Read/preprocess data No Action Control Module Evaluation senn (t+-1 )
. . . . » | criteria met? control actions
e e || e oo | LCocamenneions MVave stopsizes | || | [ne____ves] | | iteration end
Resonance Control Controller class definitions > : | A
Action execution g . Y y -
LLRF Startup scalar cost, iterate on
Send commands to erlang gradient of cost - proposed actions
I




Example from D. Ratner presentation at 2017 DS@HEP:

Cathode QE

FEL Pulse

0.000100

0.000095

Cathode QE drop caused hours of downtime.
Breakout detection (Twitter algorithm) would have found change immediately!
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D. Sanzone



PXIE RFQ

3-kHz max. freq. shift

0.1-°C water stabilization

Wall channels

All images courtesy LBNL, D. Li,A. Lambert




FAST Photoinjector

RF electron gun at the
Fermilab Accelerator Science and
Technology (FAST) facility

— Long, variable time delays

— Tight tolerances

— Recursive behavior

— Two controllable parameters

FAST RF Gun Parameters

Gun Parameters

Type Photoinjector

Number of cells 1

RF Mode TMy10

Loaded Q ~11,700

RF Frequency 1.3 GHz

Frequency Shift 23 kHz/°C
Nominal Operating Parameters

Macropulse Duration 1 ms

Repetition Rate 1-5Hz

Bunch Frequency 3 MHz

Design Gradient 40—45 MV/m

Power Source 5 MW Klystron

Photo: P. Stabile

SWIDH *g 010y



PIP_” RFQ Right now: 100s to 5ms pulse at 10 Hz

~100 kWV forward RF power

PXIE RFQ Parameters Constructed by LBNL

RFQ Design Parameters

RF frequency 162.5 MHz _ ,’

Q-factor ~13,900 :

Loaded Q ~7,000

Physical Length 4.45 m (2.4 wavelengths)

Vane-to-Vane Voltage 60 kV

Estimated Power Dissipation <100 kW

RF Repetition Rate pulsed — CW
Beam Parameters

Current 0.5 — 10 mA (nominal 5 mA)

Input Energy 30 keV

Output Energy 2.1 MeV

High-intensity RFQ for the PIP-II
Injector Experiment (PXIE)

— Time delays

— Large, dynamic frequency response
— Tight tolerances

— Coupling

— Recursive behavior

— Three controllable parameters

Photo: J. Steimel
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