Mechanical Safety Subcommittee Guideline for Design of Thin Windows Regarding Roark's Edge Condition Coefficient

C. Ader, E. Voirin, M. McGee, and L. Nobrega

An error was found in an edge stress coefficient used to calculate stresses in thin windows. This error is present in "Roark's Formulas for Stress and Strain" 7th and 8th Edition. The 6th Edition is correct. This guideline specially discusses a major difference in regards to a coefficient used in calculating the edge stress in "Roark's Formulas for Stress and Strain" 6th Edition compared to the 7th and 8th Editions. In Chapter 10: Flat Plates under "Circular plates under distributed load producing large deflections," Case 3, which is "Fixed and held. Uniform pressure *q* over entire plate." The coefficient for a fixed edge condition in the 6th Edition¹ K₄ = 0.476 while in the 7th and 8th Edition², the coefficient is 1.73 which is significant difference.

Fermilab-TM-1380: "Mechanical Safety Subcommittee Guideline for Design of Thin Windows for Vacuum Vessels"³ references Roark's 6th edition. TM-1380 is referenced in FESHM FESHM Chapter 5033.1 - Vacuum Window Safety⁴.

Case 3 in all three Roark's editions references two documents: APM-56-12: "Bending of Circular Plates with Large Deflection" by Stewart Way⁵ and "Vibration Problems in Engineering" by Stephen Timoshenko⁶.

Two independent analyses were done which show that the coefficient in the 6th Edition is correct. The first analysis, "Thin Circular Windows Under Uniform Pressure: Equation Analysis" by Erik Voirin (attached) uses the same case as in APM-56-12. Voirin's analysis compares hand calculations and FEA and concludes that K₄ for the edge should be 0.476, not the published value of 1.73 as seen in Roark and Young's 7th and 8th Edition.

The second analysis "Proof of Bending of Circular Plates with Large Deflection" by Michael McGee (attached) uses Way's book. The edge coefficient is derived and found to be $K_4 = 0.476$. The third author of the 8th Edition of "Roark's Formulas for Stress and Strain", Dr. Ali M. Sadegh⁷, has agreed in an email dated Feb. 21, 2017 that in the next edition he will revise the value K_4 back to equal 0.476 and was not sure why it had been changed. **References**

- 1. W. Young, "Roark's Formulas for Stress & Strain," 6th Edition, p. 478, 1989.
- W. Young; R. Budynas; and A. Sadegh; "Roark's Formulas for Stress & Strain, 8th Edition, p. 464, 2012.
- J. L. Western, "Mechanical Safety Subcommittee Guideline for Design of Thin Windows for Vacuum Vessels," Fermilab – TM – 1380, Revised November 2014.
- 4. Fermilab, Fermilab ES&H Manual, Chapter 5033.1, "Vacuum Window Safety."
- 5. S. Way, Bending of Circular Plates with Large Deflection, Trans. ASME, vol. 56, no. 8, 1934.
- 6. S. Timoshenko, Vibration Problems in Engineering, p. 319, D. Van Nostrand Company, 1928.
- 7. A. Sadegh, email, 2/21/17

Thin Circular Windows under Uniform Pressure: Equation Analysis

Erik Voirin - March 21, 2017 - evoirin@fnal.gov - 630-840-5168

Dimensions: Same as case in APM-56-12: Bending of Circular Plates with Large Deflection

Equations in TM1380 and Roark and Young 6th Ed. for fixed edge.

$$K_{1} := \frac{5.33}{1 - \nu^{2}} = 5.857 \qquad K_{2} := \frac{2.6}{1 - \nu^{2}} = 2.857 \qquad K_{3} := \frac{2}{1 - \nu} = 2.857 \qquad K_{4} := 0.976$$

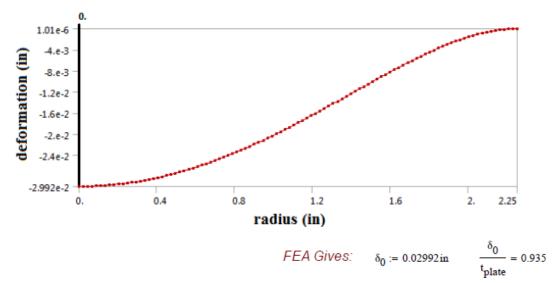
$$Deflection at Center \qquad K_{3edge} := \frac{4}{1 - \nu^{2}} = 4.396 \qquad K_{4edge} := 0.476$$

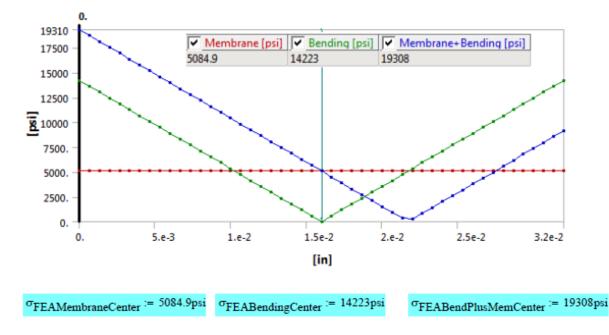
$$\frac{Pressure \cdot r^{4}}{E_{young} \cdot t_{plate}} = K_{1} \cdot \frac{\delta}{t_{plate}} + K_{2} \cdot \left(\frac{\delta}{t_{plate}}\right)^{3} \qquad \delta := Find(\delta) = 0.03071 \cdot in \qquad TM1380: Equation 5.1b$$

Stress at Center (Membrane + Bending)

TM1380: Equation 5.1a

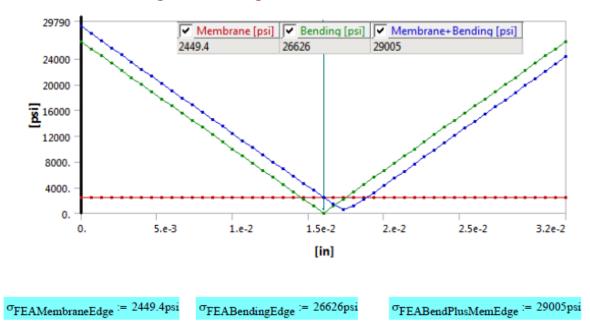
$$\sigma_{\text{center}} \coloneqq E_{\text{young}} \cdot \left(\frac{t_{\text{plate}}}{r}\right)^2 \cdot \left[K_3 \cdot \left(\frac{\delta}{t_{\text{plate}}}\right) + K_4 \cdot \left(\frac{\delta}{t_{\text{plate}}}\right)^2\right] = 22.095 \cdot \text{ksi}$$


σ_{FEACenter} := 19.308ksi

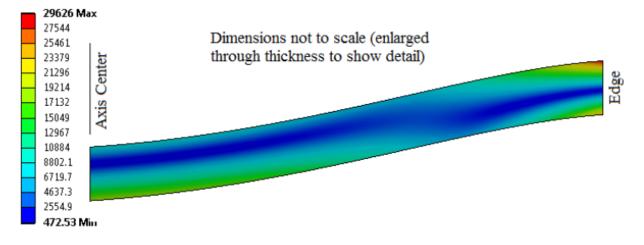

Stress at Edge (Membrane + Bending)

$$\sigma_{edge} := E_{young} \cdot \frac{t_{plate}^2}{r^2} \cdot \left[K_{3edge} \cdot \frac{\delta}{t_{plate}} + K_{4edge} \cdot \left(\frac{\delta}{t_{plate}}\right)^2 \right] = 28.26 \cdot ksi$$

$$\sigma_{FEAEdge} := 24.261 ksi$$


FEA Results for thin circular window with non-linear deformation:

Membrane and Bending Stress at Center of Plate


Membrane and Bending Stress at Edge of Plate

FEA Von Mises Stress

A: Static Structural

Equivalent Stress Type: Equivalent (von-Mises) Stress Unit: psi

Equations from APM-56-12 Bending of Circular Plates with Large Deflection

Membrane Stresses

$$\sigma_{\text{MemCenter}} \coloneqq 0.976 \cdot \left(\frac{\delta}{t_{\text{plate}}}\right)^2 \cdot E_{\text{young}} \cdot \left(\frac{t_{\text{plate}}}{r}\right)^2 = 5455 \cdot \text{psi} \quad FEA \text{ Gives}: \quad \sigma_{\text{FEAMembraneCenter}} = 5085 \cdot \text{psi}$$

$$\sigma_{\text{EMemEge}} \coloneqq 0.476 \cdot \left(\frac{\delta}{t_{\text{plate}}}\right)^2 \cdot E_{\text{young}} \cdot \left(\frac{t_{\text{plate}}}{r}\right)^2 = 2661 \cdot \text{psi} \quad FEA \text{ Gives}: \quad \sigma_{\text{FEAMembraneEdge}} = 2449.4 \cdot \text{psi}$$

$$Good \text{ agreement with } K_4 = 0.476, \text{ which states the value is conservative.}$$

Other form of equation in Roark & Young 7th and 8th editions: (Wrong K₄ value of 1.73 for edge)

$$\sigma_{\text{MembraneEdgeWRONG}} := 1.73 \cdot \left(\frac{\delta}{t_{\text{plate}}}\right)^2 \cdot E_{\text{young}} \cdot \left(\frac{t_{\text{plate}}}{r}\right)^2 = 9670 \cdot \text{psi} \qquad \text{No agreement with anything.}$$

$$\sigma_{\text{edgeWRONG}} := E_{\text{young}} \cdot \frac{t_{\text{plate}}^2}{r^2} \cdot \left[K_{3\text{edge}} \cdot \frac{\delta}{t_{\text{plate}}} + 1.73 \cdot \left(\frac{\delta}{t_{\text{plate}}}\right)^2\right] = 35.269 \cdot \text{ksi}$$

$$\sigma_{\text{edgeCorrect}} := E_{\text{young}} \cdot \frac{t_{\text{plate}}^2}{r^2} \cdot \left[K_{3\text{edge}} \cdot \frac{\delta}{t_{\text{plate}}} + 0.476 \cdot \left(\frac{\delta}{t_{\text{plate}}}\right)^2\right] = 28.26 \cdot \text{ksi} \qquad \sigma_{\text{FEABendPlusMemEdge}} = 29.005 \, \text{ksi}$$

We have concluded that K4 for the edge should be 0.476, not the published value of 1.73 as seen in R&Y editions 7 and 8.

Pro	of of Bending of Circular F	Plates With Large	e Deflection
M. McGee			February 2017
Ref. [1]: Stewart Way,	"Bending of Circular Plates W	ith Large Deflection	
Nomenclature			
or, or', or" = ot, ot', ot" = z = distance r = distance	ensity, assumed uniform radial stresses circumferential stresses from middle surface, downward from the axis of symmetry to a displacement of points of the n urface modulus	point in the plate b	pefore deflection
Consider methods by ((radial direction)	G.B. Galerkin: Displacement ω	perpendular to pla	te and displacement ρ
Symbolically	$\mathrm{E}(\omega)\equiv 0$	$\mathrm{E}(\rho)\equiv 0$	
Integrate over the entir	re circular plate		
∫ i	$E(\omega)\cdot\delta\omega dA \equiv 0$	$\int E(\rho) \cdot \delta \rho dA$	= 0
	y functions that will satisfy bou brane stresses at the circular pl		
The condition of vertic	al equilibrium of a disk of the p	late of radius r:	
$D \cdot \left[\frac{d}{d} \right]$	$\frac{1}{\ln r} \left[\frac{1}{r} \cdot \left[\frac{d}{dr} (r \cdot \varphi) \right] \right] = p \left(\frac{r}{2} \right) + h \cdot \left(\sigma_r \right)$	rp) +	eqn (8) ref [1].
Multiply eqn (8) by r,	differentiating and dividing by r		
$p \equiv \frac{D}{r}$	$\frac{1}{r} \cdot \left[r \cdot \frac{d}{dr} \left[\frac{1}{r} \cdot \left[\frac{d}{dr} \left[r \cdot \left(\frac{d}{dr} \omega \right) \right] \right] \right] \right] - \frac{h}{r} \cdot \left[\frac{d}{dr} \left[\frac{d}{dr} \left[\frac{d}{dr} \omega \right] \right] \right] = \frac{h}{r} \cdot \left[\frac{d}{dr} \left[$	$\frac{\mathrm{d}}{\mathrm{d}\mathbf{r}}\left[\mathbf{r}\cdot\boldsymbol{\sigma}_{\mathbf{r}\mathbf{p}}\cdot\left(\frac{\mathrm{d}}{\mathrm{d}\mathbf{r}}\omega\right)\right]$	eqn (42a)
Differentiate and use	relation (eqn 9) between orp ar	nd otp)	
	$\equiv \frac{\mathbf{D}}{\mathbf{r}} \cdot \left[\mathbf{r} \cdot \frac{\mathbf{d}}{\mathbf{dr}} \left[\frac{1}{\mathbf{r}} \cdot \left[\frac{\mathbf{d}}{\mathbf{dr}} \left[\mathbf{r} \cdot \left(\frac{\mathbf{d}}{\mathbf{dr}} \boldsymbol{\omega} \right) \right] \right] \right] + \frac{1}{2} \left[\mathbf{r} \cdot \left[\frac{\mathbf{d}}{\mathbf{dr}} \left[\mathbf{r} \cdot \left(\frac{\mathbf{d}}{\mathbf{dr}} \boldsymbol{\omega} \right) \right] \right] \right] \right] + \frac{1}{2} \left[\mathbf{r} \cdot \left[\frac{\mathbf{d}}{\mathbf{dr}} \left[\mathbf{r} \cdot \left(\frac{\mathbf{d}}{\mathbf{dr}} \boldsymbol{\omega} \right) \right] \right] \right] \right] + \frac{1}{2} \left[\mathbf{r} \cdot \left[\mathbf{r} \cdot \left[\frac{\mathbf{d}}{\mathbf{dr}} \left[\mathbf{r} \cdot \left(\frac{\mathbf{d}}{\mathbf{dr}} \boldsymbol{\omega} \right) \right] \right] \right] \right] + \frac{1}{2} \left[\mathbf{r} \cdot \left[\mathbf{r} \cdot \left[\frac{\mathbf{d}}{\mathbf{dr}} \left[\mathbf{r} \cdot \left(\frac{\mathbf{d}}{\mathbf{dr}} \boldsymbol{\omega} \right) \right] \right] \right] \right] + \frac{1}{2} \left[\mathbf{r} \cdot \left[\mathbf{r} \cdot \left[\frac{\mathbf{d}}{\mathbf{dr}} \left[\mathbf{r} \cdot \left[\frac{\mathbf{d}}{\mathbf{dr}} \left[\mathbf{r} \cdot \left[\frac{\mathbf{d}}{\mathbf{dr}} \mathbf{\omega} \right] \right] \right] \right] \right] \right] + \frac{1}{2} \left[\mathbf{r} \cdot \left[\mathbf{r} \cdot \left[\frac{\mathbf{d}}{\mathbf{dr}} \left[\mathbf{r} \cdot \left[\frac{\mathbf{d}}{\mathbf{dr}} \left[\mathbf{r} \cdot \left[\frac{\mathbf{d}}{\mathbf{dr}} \mathbf{\omega} \right] \right] \right] \right] \right] \right] + \frac{1}{2} \left[\mathbf{r} \cdot \left[\mathbf{r} \cdot \left[\frac{\mathbf{d}}{\mathbf{dr}} \left[\mathbf{r} \cdot \left[\frac{\mathbf{d}}{\mathbf{dr}} \mathbf{\omega} \right] \right] \right] \right] \right] \right] + \frac{1}{2} \left[\mathbf{r} \cdot \left[$	$h \cdot \left(\frac{\sigma_{rp}}{R} + \frac{\sigma_{tp}}{R} \right)$	eqn (42b)
р	r [dr r dr dr]]]]	(r rt)	

If no membrane stresses exist, the third term would go to 0 and external work is defined as

$$\pi \cdot \mathbf{p} \cdot \int_{0}^{a} \mathbf{\omega} \cdot \mathbf{r} \, d\mathbf{r}$$
 and equivalent strain energy of bending is
$$\pi \cdot \mathbf{D} \cdot \int_{0}^{a} \frac{1}{\mathbf{r}} \cdot \left[\frac{\mathbf{d}}{\mathbf{dr}} \left[\frac{1}{\mathbf{r}} \cdot \left[\frac{\mathbf{d}}{\mathbf{dr}} \left[\mathbf{r} \cdot \left(\frac{\mathbf{d}}{\mathbf{dr}} \omega \right) \right] \right] \right] \cdot \mathbf{\omega} \cdot \mathbf{r} \, d\mathbf{r}$$
 where load is portional to deflection

If membrane stresses are considered, and we neglect all displacements except those normal to the middle surface, $e/\omega = 1/R$, and the strain energy of stretching is expressed by multiplying the third term above by $1/2 \omega$ and integrating over the entire plate. The total external work is no longer

However, since the strain energy of stretching is a small part of the total, $\pi \cdot p \cdot \int_{0}^{a} \omega \cdot r \, dr$ However, since the strain energy of stretching is a small part of the total, roughly 20% when the deflection at the center equals the plate thickness, we assume that the straight line relation approximation still holds. Giving we assume that the straight line relation approximation still holds. Giving,

$$\pi \cdot \mathbf{D} \cdot \int_{0}^{a} \frac{1}{r} \cdot \left[\frac{d}{dr} \left[\frac{1}{r} \cdot \left[\frac{d}{dr} \left[\mathbf{r} \cdot \left(\frac{d}{dr} \omega \right) \right] \right] \right] \cdot \omega \cdot \mathbf{r} \, d\mathbf{r} - \pi \cdot \mathbf{h} \cdot \int_{0}^{a} \frac{1}{r} \cdot \left[\frac{d}{dr} \left[\mathbf{r} \cdot \boldsymbol{\sigma}_{rp} \cdot \left(\frac{d}{dr} \omega \right) \right] \right] \cdot \mathbf{r} \cdot \omega \, d\mathbf{r}.$$
 Eqn 43.

Then we may assume a value for ω in terms of r and a constant, complete the operations and solve for the constant and its relation to p. Assume 2

$$\omega \equiv \boldsymbol{\omega_{0}} \cdot \left(1 - \frac{r^{2}}{a^{2}}\right)$$

 $\frac{d}{dr}\left[\left(\left(\mathbf{r}\cdot\boldsymbol{\sigma}_{rp}\right)\right)\right] - \boldsymbol{\sigma}_{tp} = \mathbf{I}\cdot\mathbf{0}$

(Eqn 9)

as this is the expression for ω when the membrane stresses are neglected. Letting r = aS, and from the form of Eqn (10):

$$S \cdot \frac{d}{dS} \left(\sigma_{rp} + \sigma_{tp} \right) = -8 \cdot \frac{E \omega_0^2}{a^2} \cdot \left(S^6 - 2 \cdot S^4 + S^2 \right)$$

Integrate both sides in terms of S,

$$\sigma_{\rm rp} + \sigma_{\rm tp} \equiv -8 \cdot \frac{E\omega_0^2}{a^2} \cdot \left(\left(\frac{1}{6} \cdot S^6 - \frac{1}{2} \cdot S^4 + \frac{1}{2} \cdot S^2 + A \right) \right)$$

From (eqn 9),

$$\sigma_{rp} + \sigma_{tp} \equiv \sigma_{rp} + \frac{d}{dS} (S \cdot \sigma_{rp}) \qquad \text{and} \qquad \sigma_{rp} + \frac{d}{dS} (S \cdot \sigma_{rp}) \equiv \frac{1}{S} \cdot \left[\frac{d}{dS} (S^2 \cdot \sigma_{rp}) \right]$$

2

Find or'and ot':

$$(\sigma rp) \equiv -E \cdot \frac{\omega_0^2}{a^2} \cdot \left(\frac{1}{2} \cdot A + \frac{B}{S^2} - \frac{2}{3} \cdot S^4 + S^2\right)$$
$$\sigma_{rt} \equiv -E \cdot \frac{\omega_0^2}{a^2} \cdot \left(\frac{1}{2} \cdot A - \frac{B}{S^2} + \frac{7}{6} \cdot S^6 - \frac{10}{3} \cdot S^4 + 3 \cdot S^2\right)$$

To determine the constants of integration, we have σrp and σtp finite when S = 0, and σtp = $\mu \sigma rp$ when S = 1. Therefore,

$$\sigma_{rp} \equiv E \cdot \frac{\omega_o^2}{6 \cdot a^2} \cdot \left(\frac{5 - 3 \cdot \mu}{1 - \mu} - \frac{2}{3} \cdot S^6 + 4 \cdot S^4 - 6 \cdot S^2 \right)$$
$$\sigma_{rt} \equiv E \cdot \frac{\omega_o^2}{6 \cdot a^2} \cdot \left(\frac{5 - 3 \cdot \mu}{1 - \mu} - 7 \cdot S^2 + 20 \cdot S^4 - 18 \cdot S^2 \right)$$

Return to the energy equation (eqn 43)

$$\pi \cdot \mathbf{D} \cdot \int_{0}^{a} \frac{1}{\mathbf{r}} \cdot \left[\frac{\mathbf{d}}{\mathbf{dr}} \left[\mathbf{r} \cdot \left(\frac{\mathbf{d}}{\mathbf{dr}} \omega \right) \right] \right] \right] \cdot \mathbf{\omega} \cdot \mathbf{r} \, \mathbf{dr} - \pi \cdot \mathbf{h} \cdot \int_{0}^{a} \frac{1}{\mathbf{r}} \cdot \left[\frac{\mathbf{d}}{\mathbf{dr}} \left[\mathbf{r} \cdot \boldsymbol{\sigma}_{rp} \cdot \left(\frac{\mathbf{d}}{\mathbf{dr}} \omega \right) \right] \right] \cdot \mathbf{r} \cdot \boldsymbol{\omega} \, \mathbf{dr}.$$
 Eqn 43.

and substituting the values of ω and σrp , the first gives;

$$\frac{\pi \cdot \mathbf{p} \cdot \mathbf{a}^2 \cdot \mathbf{b}}{6} \quad \text{and} \quad \frac{32 \cdot \pi \cdot \mathbf{b}^2 \cdot \mathbf{D}}{3 \cdot \mathbf{a}^2} \quad \text{and} \quad \frac{-2 \cdot \pi \cdot \mathbf{b}^4 \cdot \mathbf{h} \cdot \mathbf{E}}{3 \cdot \mathbf{a}^2} \cdot \left[\frac{23 - 9 \cdot \mu}{42 \cdot (1 - \mu)} \right]$$

Reduce these to the same form of eqn 33 and eqn 35 and μ = 0.25

$$\frac{\omega_{o}}{h} + 0.463 \cdot \left(\frac{\omega_{o}}{h}\right)^{2} \equiv \frac{3}{16} \cdot \frac{p}{E} \cdot \left(\frac{a}{h}\right)^{4} \cdot \left(1 - \mu^{2}\right) \dots$$

Furthermore, when S is given the values 0 and 1 in eqn 44 and 45, and μ = 0.3

Therefore, membrane stress at the center

$$\frac{\sigma \cdot \mu_0^2}{E} \equiv 0.976 \cdot \left(\frac{w_0}{h}\right)^2$$

 $\frac{\sigma_{\mathbf{p}} \cdot \mathbf{r}_{0} \cdot \mu_{0}^{2}}{E} = 0.476 \cdot \left(\frac{w_{0}}{h}\right)^{2}$

at the edge

3

È...

Ref [2]: Roark & Young, Edition	on 6, p. 477 & 478, under 3.	. Fixed and held condition.		
Coefficients dirvired above (by S. Way) used in 3. Fixed and Held Plate condition as K3 and K4.				
	(at center)	K ₃ := 0.976		
	(at edge)	K ₄ := 0.476		

4