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Abstract

The required accelerating RF voltage during PIP-1l era will need to be about 30% more
than during the PIP era. Therefore, it is extremely important to find out the current RF
voltage by carrying out beam-based measurements to specify the needed upgrades to
the Booster RF system. During the beam cycle the magnetic field is changing all the
time. Due to this, 1) measuring/calibrating the RF voltage used for beam capture and
acceleration, 2) longitudinal beam tomography, are not trivial tasks. Here we present a
method to accomplish both tasks near injection and extraction energies of the Booster.
Python/Matlab programs* have been developed which use wall current monitor data to
measure synchrotron frequencies and extract the RF voltage with an accuracy of ~3%.
We have also attempted to obtain the beam tomography in the longitudinal phase space

using these data. The method developed here is applicable to any similar RCSs in the
world.
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L Fermilab Current & Future Intensity Goals
and Booster RF Requirements

Parameter PIP-I (current) | PIP-I+ (projected)® PIP-1l (2026)
Inj. & Extraction Energy (KE) (GeV) 04, 8.0 04, 8.0 0.8, 8.0
Injector to the Fermilab Booster Existing LINAC Existing LINAC New LINAC
Inj. & Extraction (p/pulse)(xE12) 4.52, 4.3 4.52, 4.3 (x~1.25) 6.63, 6.44
Number of Booster Turns 12-14 up to 20 300
Efficiency (%) 95 ~96&% 97
Booster repetition rate (Hz) 15 15 20
Beam Power at Extraction (kW) 94 115 184
Booster batches for Ml 12/1.33 s 12/1.33 sec 12/1.2 sec
NOvVA beam power (kW) 700 ~900 >1200
Rate availability for other users (Hz) 5 5 8
Booster flux capability (protons/hr) ~2.3E17 ~2.9E17 ~ 3.5E17
Booster Vrf (MV) 1 1.1 1.3
Number of Booster RF cavities 20 22 --
Beam loading/Booster cavity (kV) 12 16 18

&® Assuming many upgrades in Booster, RR & Ml related to PIP-Il are done a head of time
&Assuming the same number of proton loss/Booster cycle as expected during PIP.
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Schematic of

~ .
3= Fermilab the Booster Beam Cycle
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3% Fermilab Principle of Beam Based RF Voltage
Calibration

Measure Vrf by measuring the small angle synchrotron
frequency, f,, of the beam in stationary rf bucket.

oo |Vhinl :{fsy}ZZnﬁZES
>y rev 2nf2E; T frev hin|

frev = Revolution frequency of the beam

B= 0.713 @ Inj, 0.994 @ Extraction.
Es=1.332 GeV (@ Inj.) and 8.938 GeV (@Exit)
n= 0.458 (@Inj) and 0.0223 (@Exit)

h = 84, Harmonic number

fsy = Measured synchrotron frequency

In the case of RCS like the Fermilab Booster,
the beam will hardly be in stationary buckets
because it gets accelerated or decelerated all
the time in the Sinusoidally varying Dipole
Magnetic field (@15Hz). In the absence of
accurate RF phase info. Vrf calibration with
fsy measurements is not a trivial task.
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3¢ Fermilab /sy Measurements in the Booster

Here, fsy of the beam is measured by studying the time evolution of the
line-charge distribution in rf buckets using a wall current monitor. We
adopt two different methods

d 0.4 GeV DC: By running the Booster in DC mode at injection energy.
Performing FFT of the line-charge distribution of the captured beam
at 38 MHz at different rf voltages. €This method is straight forward.
Good for Vrf up to 730KV.

O @8 GeV: Accelerate the beam close to 8 GeV. At =3 msec before the
end of the beam cycle,

>  Hold the Vrf at a desired value

»  Turn off the radial feedback gain.

»  Hold the rf frequency at a fixed value
>

Thanks to

Excite small angle oscillations with a Vernier cavity < Nathan Eddy

Or phase mismatch arising from transition crossing

Measure line-charge distribution for several synchrotron periods and
perform FFT < This method is more complicated.

Computer programs were developed in MATLAB and in Python for
data analysis.
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0.4 GeV (DC) data- sample

Data analysis by using PY THON Code developed by Shreyas Bhat (SCD)
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8 GeV Data Sample

Data analysis using MATLAR cade
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£ Fermilab Vrf from fsy
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( At 0.4 GeV the buckets are almost full after the [ At 8 GeV, the beam size is small. Small

beam capture and the large spread in the angle synchrotron oscillations are induced

measured fsy observed. either by transition crossing phase
 Also, we could go only up to B:RFSUM=730kV due  mismatch or by turning ON a dedicated RF

to anode limit program. kicker. Hence the error in fsy is small. This

So, time being, we ignore the 0.4 GeV (DC) analysis. = method also gives us the ability to measure
fsy all the way up to B:RFSUM=1 MV.
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3& Fermilab Error in the
Measured fsy and Vrf at 8 GeV
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Longitudinal Tomography for ... mamt

the Booster Beam

O Have enough information for longitudinal fomography

0.4 GeV Vrf=0.68 MV, 0.7E12ppBc

Steven Hancock (CERN)
for Tomography code

8 GeV Vrf=0.59 MV, 2.29E12ppBc
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Longitudinal Tomography

for the High Intensity Booster Beam@ 8GeV

Vrf=0.54 MV, 5.4E12ppBc
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Q

Q

Summary and Conclusions

Fermilab Booster will play a critical role in future intensity
upgrade programs at the lab at least for next two decades.

As a part of the PIP program (to provide 700kW beam power
on NOVA neutrino target), we have refurbished all Booster
RF cavities and installed new cavities for a total of 20+1 RF
cavities in the ring.

Here we have presented beam based Vrf measurement and
we find that Vrf is about 5% smaller than the expected.
This needs to be taken into account in future efforts as
beam power increases and beam loading plays a very
important role.

We have done longitudinal beam tomography for the first
time for the Fermilab Booster beam. We plan on developing a
program to make beam tomography a routine diagnostic tool
in our machine operations.
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Backup Slides
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2% Fermilab Planned Proton Delivery Scenario
for the Booster during PIP-era

(approximate)
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3t Fermilab Transverse Emittance in the MI8 Beamline

(MW Data by Ming-Jen Yang)
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Ming-Jen's Emittance measurements using MW in the MI8 Beamline
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Does this imply, lower
LINAC current and
higher number of BT is
better for higher
intensity beam power
on the neutrino target?
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Transition crossing
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History of Beam Acceleration Efficiency

in the Booster over the past ~ two decades with
the 400 MeV LINAC beam Injection

2% Fermilab

Usual Suspect were
Space Charge Effects at
> Injection &

» Transition Crossing.

Operational
Improvements
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Accelerator Performance

Beam On Neutrino Targets for the

past one

year
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3& Fermilab Ming-jen Yang, 20160222

Beam Emittance for 6BT Beam as a function
of Timing Advances of ORBUMP in Booster at Inj.
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3# Fermilab 8 GeV Data Sample

APG heldat4.74 V

FB:Sych-Freg-Meas@400MeV-1st-Trace

el é | FB-20170307-1C-fsyatext-8BT474-y race1
_— 1] | setrgain=0
1=7F | Hold frf
800 2
2 s
2 600 —B:RFSUM@Extractio 1,—57 kv X
o« —B:RFSUM@Extractjpn =662 kv | g
@ —B:RFSUM@Extrpction =881 kv | ©
400 —BRFSUM@raction =976 kV I -
s % —l le
200 [+{fgp L QN e
0 : S
0 0.01 0.02 0.03 0.04 ~ 189nsec
Time(sec) FB:Sych-Freq-Meas@400MeV-1st-Trace
FB-20170307-1C jt-8BT-474-1trace-1
Tsy(kHz) Average = 2.466 +/- 0.0
t S apereaza
fsy from the fit to the peak position 401 o
‘0 35}
[ . [8] 530"
= Q =
F(t) = bysin(2mbyt + b3)+bs + bssin(2mbgt + b)+bg || § S 25|
| ) \ J a5
| Y X 520
Back Ground (changing magnetic field)  Synchrotron Oscillations % 151
E 10_
5l 1.6ms
< >
v 0 . . . . .
0 200 400 600 800 1000 1200

Turn Number

Chandra Bhat, DPF2017 23



2% Fermilab AE at Injection on Multi-
turn Beam
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Laslett SC tune shift

A *T\'Tfﬂf ?.FCB f
VesC = — 9 3
Ll ﬂ }}Pﬁ:p

where N;,; 1s total number of particles 1 the ring, r, =
1.53 - 10~ '®m for protons, ,, is rms normalized emittance,
B, = rp,ff* and ~y, are usual relativistic parameters. and
By > 11s a peak to average current ratio. Normally, for
proton low-energy synchrotrons the tune shift lays in range
of -0.1...-0.5 (see, e.g..[4]). Above the threshold, the beam
emittance dilute and particles are lost. Due to the accelera-
tion, the short time at low energy 1s enough for developing
only the lowest order resonances.
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