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Recent applications of machine learning 
for particle accelerator control



• What is machine learning and why should the accelerator 
community care?

• Review 2018 ICFA workshop content.
– I will be discussing others’ work. Normal caveats apply.
– Much of this work is in progress. Watch out for an Arxiv white

paper with references.

• Observation: computer scientists and accelerator physicists 
talk about these things very differently. 

• I assume I’m addressing mainly AD staff who want to know
whether machine learning might be useful for their work.

Lots of ground to cover in one talk. Some goals:



This talk summarizes the 2018 ICFA workshop. 

• 65 Participants
• 20+ Institutions 
• Attendees’ backgrounds: 

computer science, 
physics, controls, 
operations, industry 



1. Technological/commercial advances
2. Availability of HPC resources
3. Progress in algorithm development
4. Availability of open-source, high-level frameworks 

(TensorFlow, scikit-learn, etc.)
5. Private-sector demand

Why is machine learning everywhere all of a 
sudden?



What machine learning (ML) is / is not:

• Machine learning is not:
– a magic solution to all your current problems;
– globally applicable;
– easy/trivial to implement.

• Machine learning might be described by:
– computational statistics;
– big data sets;
– non-intuitive and/or non-analytic modeling.



• More uptime
– better/faster optimization & tuning
– improved fault monitoring, prediction, and diagnosis

• Less waste
– improved control of power-hungry components
– see above

What can machine learning do for us?



• Supervised learning: data somehow labeled
– Classification

• Spam ID
• Credit fraud detection

– Regression
• Unsupervised learning: unlabeled data

– Clustering
• Netflix recommendations

– Dimensionality reduction
• Semisupervised learning

– Face tagging in photo software

Taxonomy: Systems / Methods



• Reinforcement learning
– policy developed based on rewards/penalties from environment

• robot training
• Batch vs online learning

– batch: train model on ”all” data
– online: update model on the fly

• Instance- vs model-based learning
– instance: new data compared with known entities
– model: new data compared with model

Taxonomy: Systems / Methods



Workshop Synopsis



• What are the current problems faced by various accelerator 
labs? 

• Can (should) these problems be addressed through machine 
learning?

• Common themes were:
– Failure ID / prediction
– Faster simulations and online models
– How to best use our “big data”?
– Where does ML add value?

Session: Facility Needs



K. Fuchsberger: Operational challenges at LHC
360 MJ à No “playing around” 
possible; 
Highly reproducible operation 
desired…

Dumps are Costly!
à Downtime Minimization

• Also:
• Old machines drift, are insufficiently

instrumented, have narrow optima,
...

• Stability requirements change with a 
new cycle every 1.2 seconds x 
hundreds of cycles per year in PSB.



J. Nielsen (LHC): Total Power Outage  
400 kV CERN

66kV

EHT5
110MVA

EHT4
110MVA

EHT3
90MVA

EHT2
90MVA

EHT1
90MVA

L9

SEM12

MP7 – 30MVA

EHT102
LHC1
70MVA

L1
ME9

ME59
MP5 – 60MVA

EHT611
60MVA

EHT612
60MA

ME10

130kV SIG

PS ISOLDE

EHT102
38MVA

L8

EHT102
38MVA

L6

EHT102
38MVA

L4

EHT102
38MVA

L2

EHT103
38MVA

BE – 18kV

LHC Machine Network

General Services Meyrin - PSC

M
E

50

ME9 Machine Meyrin -  PSC

LHC
General Services

Loop

ME9 Safety Network

G

EHT102
ME59
70MVA

SWITZERLAND

WA

Autotransfert

Admin.
513

Computer 
Center

FRANCE
400 kV RTE (Bois Tollot)

L5
9Pulsed Network 

(SPS / North Area)

SPS NA Backup lines to Meyrin  & 
Prévessin General Services SPS Main 

conversion 
stations

..

15 MVA

BEQ3 BEQ2 BEQ1

Comp.
25 MVAr

Comp.
25 MVAr

Comp.
25 MVAr

Comp.
25 MVAr

Comp. Booster
17 MVAr

BE9 - 18kV

EHT7
BE9
70MVASPS

General Services SPS / 
North Area / Prévessin

BE91

NA Prévessin

G

What could we do with machine learning?
• Detect safety alarm (emergency stop) 
• Correlate safety alarm with power cut

• Propose to create event in logbook 
• Propose possible causes (simple here..)

• Propose critical installations that would 
need special attention

What happened?
• Faulty emergency stop button
• Complete Power Outage

• How to correlate problem (outage,
system failure) with a specific cause?

• Fault anticipation & faster diagnostics 
yield less downtime.

• How are faults diagnosed now? 
Operator/electrician instincts play a role.



• Cavity fault detection requires: Ufor, Uref, Uprobe
• Data rates to DAQ per cavity per pulse:

– 2048 x 2 x 3 x 16bit = 24.6kB
– Pulses per Day = 864000
– 700 cavities à 604 Mio events/day
– Total data/day = 14.8 TB

• Good statistics (ensemble & events)
Questions we like to address:

– How many cav./pulses behave normally
– Cav/Pulses out of nominal operation range
– Reliably quench detection and reaction
– Anomalies: due to parameter changes
– Anomalies: due to digital / communication/ readout 

R. Kammering (DESY): SRF cavity anomaly detection

Primary goal is cryomodule health, but a window 
into cavity physics issues would be helpful too.



• Automated tuning would be a big boost to operations.
• Should this tuning be model-based, or model-independent?

Session: Tuning



S. Tomin, I. Agapov (DESY/XFEL)

15

Tuning platforms:
Ocelot (DESY) provides 
generic base for 
accelerator 
optimization/simulation
è Now multi-lab 
collaboration

At LCLS: 450 
hours/year in 2016
è Automated tuning 
cut avg time by half in 
2017!

SLAC GUI



• 5.5 keV self-seeding FEL
• Clustering / reinforcement learning to characterize system

state(s)
• ML online optimization of taper profile doubled peak energy
• publication pending

From J. Wu (SLAC): LCLS taper optimization



J. Duris (SLAC): Bayesian optimization to tune 
from noise

17

GDET
noise?

GDET
~ 50 uJ

Beam power

L3 energy
Change

14 -> 6.5 GeV

GP run on 
LI26 quads

GP run on 
LTU quads

We used a Bayes prior from summer 2017 data to tune up a brand new 
config from noise. Simplex could not do this as it needs signal to tune on.



G. Gaio (FERMI@Elettra): Spectrum Optimization

18

• The FEL Quality Factor (FELQFactor) is an index which summarizes in a number the most important
features of the photon energy spectrum: intensity, spectral purity and number of modes.

• The FELQFactor algorithm is capable of evaluating the spectrum image as an expert does
• It has been used in some preliminary machine optimization tests; two optimization algorithms have

been used: Ascent Gradient and Extremum Seeking.
• The actuators were the seed laser delay line and the dispersive section.

FEL spectrum before (left) and after (right) optimization based on
the FELQFactor index

High resolution photon spectrometer
• the horizontal axis is the photon 

energy
• the vertical axis represents the 

vertical photon beam distribution

“Free-electron Laser Spectrum Evaluation and Automatic Optimization”, Nuclear Inst. and Methods in 
Physics Research, A 871 (2017) 20 29



• Using neural networks, GANs to model complex systems
– including systems here at Fermilab!

• ”Surrogate modeling”: using a slow, offline model to train a 
fast-executing neural network

Session: Modeling and simulation





# 211 March 2018 – SLAC

J. Edelen (RadiaSoft): NN modeling and virtual 
diagnostics at FAST

• Using Neural Networks
– Online modeling 

• High fidelity physics simulations run off line on HPC resources
• Use dataset to train a neural network surrogate model 
• Fast executing, can be used to model upstream components when 

downstream machine configurations are changing

– Virtual diagnostics
• In many ways this is similar to online modeling 
• Intercepting diagnostics are very useful for characterizing the 

beam 
• Pre-train a neural network model using simulation data and update 

with measurements 
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L. De Oliveira (LBNL): GANs for HEP simulation



• Use available data to identify anomalous behavior.
– Identify faulty devices, predict imminent failure.
– Recall discussion of SRF cavity quench prediction.
– See also: Wielgosz et al., ”Using LSTM recurrent neural 

networks for monitoring the LHC superconducting magnets”, 
https://www.sciencedirect.com/science/article/pii/S01689002173
0668X

Session: Prognostics



• At PSI, interlocks cause O(2%) of beam time loss.
• Try to predict interlocks through classification on 57 

parameters (magnet currents, non-intercepting diagnostic 
data, etc.)

• Very preliminary results:

A. Adelmann and J. Snuvernik (PSI): Forecasting 
interlocks 



E. Fol (CERN): Detection of faulty beam position 
monitors

• 1024 BPMs per beam. Used for optics 
reconstruction & to guide corrections.
• ~10% of BPMs are faulty. These should be 

scrubbed from the correction process.
• DBSCAN clustering analysis to find outliers.



• The LHC is equipped with a multi-stage collimation system to protect it from 
normal and abnormal beam losses.
– Normal losses: ensure that proton leakage to superconducting magnets is minimal, 

preventing quenches
– Abnormal losses: protection against fast failure scenarios such as asynchronous beam 

dump

• The collimation system cleans particles with large betatron and off-momentum 
offsets

G. Valentino (CERN/U. Malta): Beam loss plane 
detection

Gianluca 
Valentino

Beam loss plane recognition for the LHC28
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G. Valentino: BPM Spike Classification

28/02/201
8

29

G. Azzopardi, “Spike Pattern Recognition for Automatic 
Collimation Alignment” No. CERN-ACC-NOTE-2018-0010. 

The ML model was tested during an MD and achieved 50/52 correct classifications
Examples:

Correctly classified No Spike Correctly Classified Spike

Courtesy: G. Azzopardi



• What can we do with all the data we collect?

Session: Data analysis



• Micro-bunching instability (MBI) in storage 
rings with short e- bunches

• à Fluctuations in emitted CSR power
• Apply clustering algorithms to 1.5M bunch 

profiles:
– Distinct micro-structures identified.

T. Boltz (KIT): MBI structure in storage rings



T. Mohayai (IIT): Emittance measurement via KDE 



• Correlation matrix for beamline elements
• Ongoing work

J. Snuvernik (PSI): Data visualization



The next workshop: March 2019 at PSI

A synopsis of the 2018 workshop will be published on the Arxiv soon.



• Automated tuning reduces tuning time by 50% at LCLS
• Online taper optimization doubled FEL peak power (J. Wu)
• Tune FEL up from noise w/ Bayesian priors (J. Duris)
• Optimize beam spectrum (G. Gaio)
• Improve control / reduce settling times for RFQ, gun (A. 

Edelen)
• Identify interlocks / component failures (A. Adelmann, E. Fol)
• Automate collimator alignment (G. Valentino)
• Identify & characterize micro-bunching structures (T. Boltz)
• Precisely measure beam emittances (T. Mohayai)
• Visualize complex datasets (J. Snuvernik)
• This is not an exhaustive list!

Reviewing ML-assisted performance boosts:



• If you have problems amenable to ML solutions, let’s discuss.
• Modest resources available at Fermilab.

ML experts are looking for collaboration

Thanks for your attention!


