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Lots of ground to cover in one talk. Some goals:

« What is machine learning and why should the accelerator
community care?

* Review 2018 ICFA workshop content.
— | will be discussing others’ work. Normal caveats apply.

— Much of this work is in progress. Watch out for an Arxiv white
paper with references.

« Observation: computer scientists and accelerator physicists
talk about these things very differently.

« | assume I’'m addressing mainly AD staff who want to know
whether machine learning might be useful for their work.
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This talk summarizes the 2018 ICFA workshop.

@ @ https://conf.slac.stanford.edu/icfa-ml-2018/ B - @ % Q wikimedia commons = &5 1

Machine Learning Applications for Particle Accelerators

HOME AGENDA REGISTRATION (CLOSED) PARTICIPANTS VISITING SLAC= CONTACT US

QUICK LINKS

T MACHINE LEARNING

k= o PARTICLE

=" A\CCELERATORS

February 28 - March 2, 2018, SLAC National Accelerator Laboratory

%) Registration (closed)

65 Participants

« 20+ Institutions

« Attendees’ backgrounds:
computer science,
physics, controls,
operations, industry
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Why is machine learning everywhere all of a
sudden? ‘

1.

o1

2. Availability of HPC resources
3.
4. Availability of open-source, high-level frameworks

Technological/commercial advances

Progress in algorithm development

(TensorFlow, scikit-learn, etc.)
Private-sector demand
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What machine learning (ML) is / is not:

* Machine learning is not:
— a magic solution to all your current problems;
— globally applicable;
— easy/trivial to implement.
« Machine learning might be described by:
— computational statistics;
— big data sets;
— non-intuitive and/or non-analytic modeling.
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What can machine learning do for us?

* More uptime

— better/faster optimization & tuning

— improved fault monitoring, prediction, and diagnosis
* Less waste

— improved control of power-hungry components

— see above
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Taxonomy: Systems / Methods

« Supervised learning: data somehow labeled
— Classification
« Spam ID
» Credit fraud detection
— Regression
« Unsupervised learning: unlabeled data

— Clustering
* Netflix recommendations

— Dimensionality reduction
« Semisupervised learning
— Face tagging in photo software
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Taxonomy: Systems / Methods

* Reinforcement learning

— policy developed based on rewards/penalties from environment
* robot training

» Batch vs online learning
— batch: train model on "all” data
— online: update model on the fly
* Instance- vs model-based learning
— instance: new data compared with known entities
— model: new data compared with model
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Workshop Synopsis

2= Fermilab



Session: Facility Needs

« What are the current problems faced by various accelerator
labs?

« Can (should) these problems be addressed through machine
learning?
« Common themes were:
— Failure ID / prediction
— Faster simulations and online models
— How to best use our “big data™?
— Where does ML add value?
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K. Fuchsberger: Operational challenges at LHC
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J. Nielsen (LHC): Total Power Outage
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* How to correlate problem (outage,
system failure) with a specific cause?

* Fault anticipation & faster diagnostics
yield less downtime.

 How are faults diagnosed now?

Operator/electrician instincts play a role.

What happened?
* Faulty emergency stop button

" ¢ Complete Power Outage

What could we do with machine learning?
* Detect safety alarm (emergency stop)
Correlate safety alarm with power cut

* Propose to create event in logbook
* Propose possible causes (simple here..)

* Propose critical installations that would
need special attention
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R. Kammering (DESY): SRF cavity anomaly detection
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« Data rates to DAQ per cavity per pulse: .
— 2048 x 2 x 3 x 16bit = 24.6kB
— Pulses per Day = 864000

— 700 cavities - 604 Mio events/day
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| B
= Forward
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= Probe

— Total data/day = 14.8 TB
« Good statistics (ensemble & events)

Questions we like to address: A
— How many cav./pulses behave normally
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Field
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1MSPS
16bit. I/Q

— Anomalies: due to parameter changes
due to digital / communication/ readout

Primary goal is cryomodule health, but a window
into cavity physics issues would be helpful too.
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Session: Tuning

» Automated tuning would be a big boost to operations.
« Should this tuning be model-based, or model-independent?
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S. Tomin, . Agapov (DESY/XFEL)

Tuning platforms:

Ocelot (DESY) provides
generic base for
accelerator
optimization/simulation
= Now multi-lab
collaboration

Fields for
device limits

B Ocelot Interface

Objective and Alarm Function Setup
PV:A XFEL.FEL/XGM.PREPROCESSING/XGM.2643.T9.CHO/RESULT.TD
PV:B
PV:C
PV:D
PV:E
Objective Function: np.mean(np.array(A)[:,1])

Max Penalty

@ Use Predefined Objective Function

Edit Objective Function

XFEL.DIAG/CHARGE.ML/TORC.3098.T4AD/BEAM_MASTERTRANSMISSION.SA1 Value: 0.0

Limits: ~ Min Max  [100.00
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Alarm 1
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@ Set Best Solution After Optimization
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Relative Step in %
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From J. Wu (SLAC): LCLS taper optimization

« 5.5 keV self-seeding FEL

» Clustering / reinforcement learning to characterize system
state(s)

* ML online optimization of taper profile doubled peak energy
* publication pending |
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J. Duris (SLAC): Bayesian optimization to tune
from noise

We used a Bayes prior from summer 2017 data to tune up a brand new
config from noise. Simplex could not do this as it needs signal to tune on.
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G. Gaio (FERMI@Elettra): Spectrum Optimization

18

Vertical profile [px]

The FEL Quality Factor (FELQFactor) is an index which summarizes in a number the most important
features of the photon energy spectrum: intensity, spectral purity and number of modes.

The FELQFactor algorithm is capable of evaluating the spectrum image as an expert does

It has been used in some preliminary machine optimization tests; two optimization algorithms have
been used: Ascent Gradient and Extremum Seeking.

The actuators were the seed laser delay line and the dispersive section.

High resolution photon spectrometer
* the horizontal axis is the photon
energy
* the vertical axis represents the
vertical photon beam distribution
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FEL spectrum before (left) and after (right) optimization based on
the FELQFactor index
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Session: Modeling and simulation

« Using neural networks, GANs to model complex systems
— Including systems here at Fermilab!

« "Surrogate modeling”: using a slow, offline model to train a
fast-executing neural network
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Temperature Control for the RF Photoinjector at FAST

Gun Water System Layout

- LCWreturn |
Resonant frequency controlled via temperature LLCW supply .
< h + -
N . . . control mixing chamber Q To6
PID control is undesirable in this case: o (
* Long transport delays and thermal responses
* Recirculation leads to secondary impact of disturbances
* Two controllable variables: heater power + valve aperture
Applied model predictive control (MPC) with a neural network model
trained on measured data: ~ 5x faster settling time + no large overshoot
Existing Feedforward/PID Controller
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Note that the oscillations are largely due to the transport delays and water recirculation, rather than PID gains

Time Elapsed [minutes]

A L Edelen et al, TNS, vol. 63, no. 2, 2016

AL Edelen et al.,, IPAC 15
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J. Edelen (RadiaSoft): NN modeling and virtual
diagnostics at FAST

« Using Neural Networks

— Online modeling
« High fidelity physics simulations run off line on HPC resources
« Use dataset to train a neural network surrogate model

« Fast executing, can be used to model upstream components when
downstream machine configurations are changing

— Virtual diagnosfics
* In many ways this is similar fo online modeling

 Intercepting diagnostics are very useful for characterizing the
beam

» Pre-train a neural network model using simulation data and update
with measurements

2% Fermilab
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J. Edelen (RadiaSoft): NN modeling and virtual
diagnostics at FAST
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Initial NN Modeling for RFQ: Same as for FAST

wanted to make sure we could model the response before moving forward

Feed-forward, Fully-connected Network

Resonant Frequency Shift [kHz]

Xt—hist

—| NN | —
(W),

Xt

hist:30 minutes at | Hz

Two hidden layers: 25 and 7 nodes

X includes:
Valve settings
Average RF power
Water temperatures
Cave temperature
Cave humidity

L

—measured
—predicted

Mean Absolute Error

346 Hz — test set
98 Hz — validation set
|15 Hz — acrossall sets
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Training Data

~ 64 hours of measurements
Scanned average RF power, valves
Includes RF trips, startup/shutdown

A.L Edelen et al., IPAC‘1 6
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L. De Oliveira (LBNL): GANs for HEP simulation

GANs in HEP

» Ultimate goal: quickly and accurately simulate
particles interacting with individual detector
components - speed up slow simulation

jet image

* Intermediary goal: can we speed up calorimeter
. . . . Average over thousands
simulation, which is the current bottleneck? of jet images

| =

« First step: can we learn to generate jet images i ry -
. . . o § oo
using a Generative Adversarial Network? ] p_ll . i -

-1.0 =05 0.0 0.5 1.0 —1 0 =05 0.0
[Transformed) Pseudorapidity () [Transformed] Pseudor: pldlty (n)

A jet image

[Transformed] Azimuthal Angle (
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Session: Prognostics

« Use available data to identify anomalous behavior.
— ldentify faulty devices, predict imminent failure.
— Recall discussion of SRF cavity quench prediction.

— See also: Wielgosz et al., "Using LSTM recurrent neural
networks for monitoring the LHC superconducting magnets”,
https://www.sciencedirect.com/science/article/pii/S01689002173

0668X
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A. Adelmann and J. Snuvernik (PSI): Forecasting
interlocks

« At PSI, interlocks cause O(2%) of beam time loss.

« Try to predict interlocks through classification on 57
parameters (magnet currents, non-intercepting diagnostic
data, etc.)

* Very preliminary results:

m R

ROC - validation data

m R

70 1

true positives [%]

0 2 - 6 8 10
false positives [%]
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E. Fol (CERN): Detection of faulty beam position
mOnitorS 4 uncleaned { DBSCAN

AB. /B,

5000 10000 15000 20000 25000
Longitudinal location [m]

* 1024 BPMs per beam. Used for optics
reconstruction & to guide corrections.

* ~10% of BPMs are faulty. These should be
scrubbed from the correction process.

« DBSCAN clustering analysis to find outliers.
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G. Valentino (CERN/U. Malta): Beam loss plane
detection

« The LHC is equipped with a multi-stage collimation system to protect it from
normal and abnormal beam losses.

— Normal losses: ensure that proton leakage to superconducting magnets is minimal,
preventing quenches

— Abnormal losses: protection against fast failure scenarios such as asynchronous beam
dump

« The collimation system cleans particles with large betatron and off-momentum
offsets

B4L7
A4LT Betatron

cleaning

2% Fermilab
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G. Valentino: BPM Spike Classification

The ML model was tested during an MD and achieved 50/52 correct classifications

Examples:
Correctly classified No Spike Correctly Classified Spike

E 25Hz data starting ~2017-11-30 17:50:35 - NO SPIKE E 25Hz data starting ~2017-11-30 18:02:23 - SPIKE
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84 —— Se
© 3 ©
kel Ty
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o1 o
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s0 s°
a @
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. -182 . -15725
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 -188 = -1.5800
< -1.90 5, -1.5825
& 192 & —1.5850
-1.94 -1.5875
-1.96 -1.5900
-4 -2 0 2 4 6 8 -4 -2 [ 2 6 8
Relative Time [sec]

Relative Time [sec]

Courtesy: G. Azzopardi

G. Azzopardi, “Spike Pattern Recognition for Automatic
Collimation Alignment” No. CERN-ACC-NOTE-2018-0010.
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Session: Data analysis

« What can we do with all the data we collect?

2% Fermilab



T. Boltz (KIT): MBI structure in storage rings

* Micro-bunching instability (MBI) in storage
rings with short e- bunches o RN |
g % FlUCtuatlonS |n emltted CSR power 0 500 I mi°'°'5‘“'es 200

- Apply clustering algorithms to 1.5M bunch
profiles:

— Distinct micro-structures identified.

130

long. position (px)

\,
o
|| |
O O O O O =
o hr o ®oO
charge density (arb. unit)

Micro-Structure Characteristics T Outlook A{]]

Modulation Frequencies across different Bunch Currents Further Studies using the Application of k-means

250 14 - FTTTTATTTTT :L 77777 ;7 ____fitfunction: f(h) =a-H° +¢ =350

parameter: b = —1.53 £ 0.37
| fit function: f(h) =a-h°+¢ | |30Q
parameter: b = —1.59 £+ 0.35
T T T T

12

200

number of micro-structures
modulation frequency (GHz)

N |
T |
0} 1 :
§ 3 : 10 - Iy oc h~ "5 found by Bane, K.L.F. etal. (" || 250
g 150 : N I [} [} I [}
o | 1
o ' ‘ 1 1 1 1
T 100%, : 8oy WA 200
9 1 1
© X
3 50 W: 6 1150
o 1
E : : [ | i i 1 1 1 | Il 1 |
06 08 10 12 14 16 18 20 16 18 20 2 24 2 2 30 32
bunch current (mA) vacuum gap 2h (mm)
(1) Bane, K.L.F, Y. Cai, and G. Stupakov Phys. Rev. ST Accel. Beams 13 (2010)
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T. Mohayai (lIT): Emittance measurement via KDE
KDE Density and Volume — MICE Baseline

@ Volume:

? Density: :2D volgmc ‘c_:iamplc
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J. Snuvernik (PSIl): Data visualization

extraction and RF f:'iif '.
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e Correlation matrix for beamline elements
« Ongoing work
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The next workshop: March 2019 at PSI

A synopsis of the 2018 workshop will be published on the Arxiv soon.
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Reviewing ML-assisted performance boosts:

« Automated tuning reduces tuning time by 50% at LCLS

* Online taper optimization doubled FEL peak power (J. Wu)
« Tune FEL up from noise w/ Bayesian priors (J. Duris)

« Optimize beam spectrum (G. Gaio)

« Improve control / reduce settling times for RFQ, gun (A.
Edelen)

 |dentify interlocks / component failures (A. Adelmann, E. Fol)
« Automate collimator alignment (G. Valentino)

 ldentify & characterize micro-bunching structures (T. Boltz)

* Precisely measure beam emittances (T. Mohayai)

* Visualize complex datasets (J. Snuvernik)

« This Is not an exhaustive list!
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ML experts are looking for collaboration

 If you have problems amenable to ML solutions, let’s discuss.
* Modest resources available at Fermilab.

Thanks for your attention!
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