

MicroTCA.4 at Sirius and a closer look into the community

IBIC 2019 - Malmö

Daniel Tavares LNLS Beam Diagnostics Group

September 11, 2019

MicroTCA.4 and MicroTCA.4.1

🗼 sirius

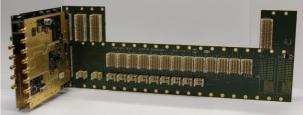
MicroTCA.4 (Jul/2011)

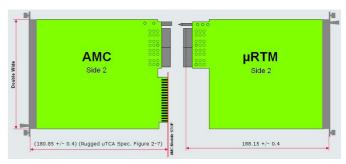
- Double-width AMC
- Rear Transition Module _
- Triggers and clocks on the backplane _

MicroTCA.4.1 (Nov/2016)

- Zone 3 connector (RTM) standardization
- RF backplane -
- Protective covers _
- Software Guidelines (2017)
- Mature integration with several timing systems •
 - AMC modules for MRF, White Rabbit (WR), EuXFEL and SINAP event receivers
 - COTS White Rabbit tongue 2 for MCH
 - White Rabbit RF backplane LO distributor eRTM _ (Distributed DDS)

Vadatech Crate


Pentair/Schroff Crate



RF Backplane U. Mavric IPAC'14 – WEPME069

White Rabbit

MCH Tongue 2 (clock)

Courtesy G. Kasprowicz

A bit of history...

2004: "Electronics Packaging Issues for Future Accelerators and Experiments", NSS-MIC paper, R. Larsen and R. W. Downing

2004-2009: several discussions, meetings, workshops, technology demonstrations for ATCA and MicroTCA (SLAC, DESY, FNAL, ANL, KEK – later on joined by CERN, ITER, IPFN, IHEP, IN2P3, ESS-Bilbao and others)

2009: "xTCA for Physics" PICMG Working Group

2011: MicroTCA.4 is officially released by PICMG

TESLA Test Facility

Image: DESY

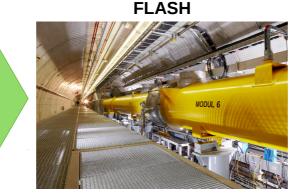


Image: DESY

European XFEL

Image: D Nölle/DESY

Sirius – new 4th generation light source in Brazil

Sirius Status

Booster:

- First turns ok
- Current activities: RF cavity + Energy ramp

Storage Ring:

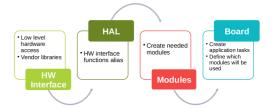
- Installations finished on 09/Sept/2019
- Commissioning: 10/Sept/2019

MicroTCA.4 at Sirius

- 🗼 sirius
- LINAC LLRF Crate provided by SINAP
 - 3x Struck SIS8300-L2
 - 3x Struck DRTM-DWC8VM1
 - FPGA gateware and software provided by SINAP

BPM Electronics and Orbit Feedback Crate

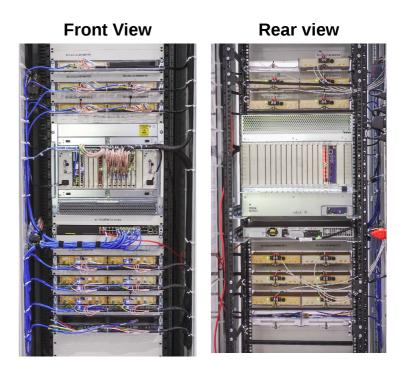
- Pentair/Schroff 12-slot Crate with JSM
- N.A.T. PHYS80 MCH + µRTM COMex CPU
- Wiener Low Noise 1 kW Power Supply (redundant)
- CAENels FMC-Pico-1M4 _
- Faster Technology FMC SFP FM-S14 _
- **Open Hardware AMC FMC Carrier (AFC)** -
- Open Hardware FMC ADC 16-bit 250 MS/s _
- **Open Hardware FMC POF (plastic optical fiber)** -
- Open Hardware µRTM 8-SFP -
- Open Hardware RTM Fast Orbit Corrector Power Supply (coming soon!) _
- **Open source MMC firmware (openMMC)** -
- Open source gateware and software for controls and data acquisition
- Standalone RF Front-End Electronics (not integrated to the crate) _



Our MTCA.4 successes

- Designed and funded reusable hardware designs (e.g. AFC, FMC ADC 16 bit 250 MS/s)
- Cheap and versatile open hardware AMC FMC Carrier (AFC)
 - Based on cheap FPGA device (< 200 USD): Xilinx Artix-7 200T
 - Gave us flexibility to accommodate system architecture changes along the project
 - Spin-off Kintex version (AFCK) by WUT
- High integration in one single crate one MTCA.4 crate per Sirius sector:
 - 9 AMC slots: 4x X-Ray BPM + 14x RF BPM Electronics (Booster and Storage Ring)
 - 1 AMC slot: FOFB Controller
 - 1 AMC slot: Timing Receiver
- openMMC has been adopted by other facilities
 - openMMC is built on top of FreeRTOS
 - Adopted by LNLS and CERN collaborative development
 - GPL code available at: https://github.com/lnls-dig/openMMC
- Custom backplane with 11-slot full mesh on AMC ports 2-3, 8-15

6



Our MTCA.4 mistakes and struggles

- Mistakes
 - Many RF cables entering in the frontral area / empty RTM slots
 - RF Front-End electronics do not benefit from MTCA.4 hardware management

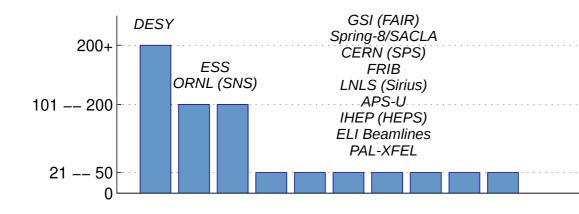
Struggles

- Interoperability issues → tended towards typical crate setup to minimize risks
- Recovery on system reset
- FPGA gateware update via JSM
- High dependency on MCH supplier for IPMI debugging
- Mechanical insertion and removal of modules is painful (sometimes literally!), especially the MCH

- **Mission:** picture the status and maturity of MicroTCA.4 in the accelerators community
- **Survey:** 27 participants
- This talk:
 - Part 1: status of MTCA.4 adoption in accelerator facilities
 - Part 2: maturity of MTCA.4 standard and its ecosystem
 - <u>Part 3:</u> topics for discussion and summary

- Declaring the biases of this talk:
 - Accelerators (not Experiments, not Detectors)
 - Diagnostics and Beam-based Feedbacks (not LLRF, not Timing, not MPS)
 - Collaboration
- Point-of-view:
 - "Ordinary user"
 - Not member of any PICMG working group (yet)
- We have made "MicroTCA.4 mistakes" in the past!

Survey results


Table 1: MTCA.4 projects on accelerator facilities (non-exhaustive list). a) LLRF, b) BPM Electronics, c) BAM Electronics, d) Beam Diagnostics (other than BPM and BAM Electronics), e) Synchronization/Timing, f) Machine Protection, g) Feedback Control, h) Image Processing, i) Experiment Control, j) Massive Data Processing.

Facility	Location	a	b	с	d	e	f	g	h	i	j	Number of Crates
DESY (E-XFEL, FLASH) [39]	Germany	х	х	х	х	х	х	х	х	х	х	200+
ESS [40, 41]	Sweden	х	х	-	х	х	х	-	-	-	-	101-200
ORNL (SNS) [42]	USA	х	-	-	-	-	х	х	-	-	х	101-200
GSI (FAIR) [43]	Germany	х	х	-	х	х	-	х	х	х	-	51-100
Spring-8/SACLA [44, 45]	Japan	х	х	-	х	х	-	х	-	-	-	51-100
CERN (SPS) [46]	Switzerland	х	-	-	-	х	-	х	-	х	-	21-50
FRIB [47]	USA	-	х	-	х	х	х	-	-	-	-	21-50
LNLS (Sirius) [20]	Brazil	х	х	-	-	х	-	х	-	-	-	21-50
APS-U [48]	USA	х	-	-	х	-	-	х	-	-	-	21-50
IHEP (HEPS)	China	х	-	-	-	х	х	-	-	-	-	21-50
ELI Beamlines [49]	Czech Republic	-	-	-	-	х	-	-	-	х	-	21-50
PAL (PAL-XFEL)	South Korea	-	х	-	-	-	-	-	-	-	-	21-50
CSNS (IHEP)	China	х	-	-	-	-	-	-	-	-	-	11-20
Diamond [50]	UK	х	-	-	х	-	-	х	-	-	-	6-10
KEK (SuperKEKB, STF-2) [51]	Japan	х	х	-	-	-	-	-	-	-	-	6-10
SINAP (SXFEL, SHINE) [52]	China	х	-	-	-	-	-	-	-	-	-	6-10
KIT (FLUTE) [53]	Germany	х	х	-	х	х	-	х	-	х	-	1-5
CANDLE [54]	Armenia	х	-	-	х	х	-	-	-	-	-	1-5
Soleil	France	х	-	-	-	-	-	-	х	х	-	1-5
USTC (HLS-II)	China	х	х	-	-	-	-	-	-	-	-	1-5
HZDR (ELBE) [55]	Germany	х	-	-	-	х	-	-	-	-	-	1-5
ANSTO (AS) [56]	Australia	-	-	-	-	-	х	-	-	-	-	1-5
Elettra	Italy	-	-	-	-	-	-	х	-	-	-	1-5
ESRF	France	-	-	-	-	-	-	х	-	-	-	1-5
IMP/CAS (ADS) [57]	China	х	-	-	-	-	-	-	-	-	-	1-5
J-PARC [58]	Japan	х	-	-	-	-	-	-	-	-	-	1-5
JGU (MESA [59])	Germany	х	-	-	-	-	-	-	-	-	-	1-5

Table 1: MTCA.4 projects on accelerator facilities (non-exhaustive list). a) LLRF, b) BPM Electronics, c) BAM Electronics, d) Beam Diagnostics (other than BPM and BAM Electronics), e) Synchronization/Timing, f) Machine Protection, g) Feedback Control, h) Image Processing, i) Experiment Control, j) Massive Data Processing.

Facility	Location	a	b	c	d	e	f	g	h	i	j	Number of Crates
DESY (E-XFEL, FLASH) [39]	Germany	х	х	х	х	х	х	х	х	х	х	200+
ESS [40, 41]	Sweden	х	х	-	х	х	х	-	-	-	-	101-200
ORNL (SNS) [42]	USA	х	-	-	-	-	х	х	-	-	х	101-200
GSI (FAIR) [43]	Germany	х	х	-	х	х	-	х	х	х	-	51-100
Spring-8/SACLA [44, 45]	Japan	х	х	-	х	х	-	х	-	-	-	51-100
CERN (SPS) [46]	Switzerland	х	-	-	-	х	-	х	-	х	-	21-50
FRIB [47]	USA	-	х	-	х	х	х	-	-	-	-	21-50
LNLS (Sirius) [20]	Brazil	х	х	-	-	х	-	х	-	-	-	21-50
APS-U [48]	USA	х	-	-	х	-	-	х	-	-	-	21-50
IHEP (HEPS)	China	х	-	-	-	х	х	-	-	-	-	21-50
ELI Beamlines [49]	Czech Republic	-	-	-	-	х	-	-	-	х	-	21-50
PAL (PAL-XFEL)	South Korea	-	х	-	-	-	-	-	-	-	-	21-50

- **12 facilities** having more than 20 crates deployed or to be deployed
- Most common applications:
 - LLRF (9)
 - Timing/Synchronization (9)
 - BPMs (7)
 - Feedbacks (7)
- Still rare applications:
 - Image Processing (2)
 - BAM (1)

Table 1: MTCA.4 projects on accelerator facilities (non-exhaustive list) d) Beam Diagnostics (other than BPM and BAM Electron Feedback Control, h) Image Processing, i) Experiment Control, j) Mass

х

х

х

х

х

х

х

х

х

х

х

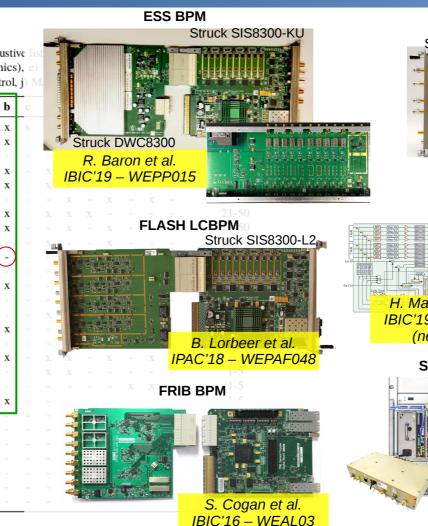
х

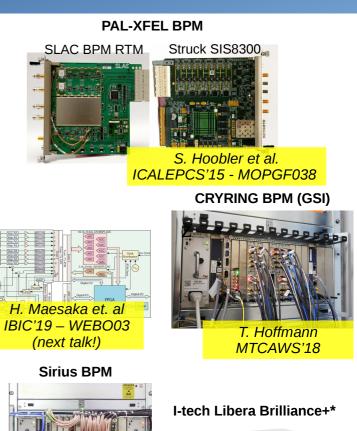
х

х

Facility	Location
DESY (E-XFEL, FLASH) [39]	Germany
ESS [40, 41]	Sweden
ORNL (SNS) [42]	USA
GSI (FAIR) [43]	Germany
Spring-8/SACLA [44, 45]	Japan
CERN (SPS) [46]	Switzerland
FRIB [47]	USA
LNLS (Sirius) [20]	Brazil
APS-U [48]	USA
IHEP (HEPS)	China
ELI Beamlines [49]	Czech Republic
	South Korea
CSNS (IHEP)	China
Diamond [50]	UK
KEK (SuperKEKB, STF-2) [51]	Japan
SINAP (SXFEL, SHINE) [52]	China
KIT (FLUTE) [53]	Germany
CANDLE [54]	Armenia
Soleil	France
USTC (HLS-II)	China
HZDR (ELBE) [55]	Germany
ANSTO (AS) [56]	Australia
	Italy
	France
IMP/CAS (ADS) [57]	China
J-PARC [58]	Japan
JGU (MESA [59])	Germany

- LLRF systems based on E-XFEL/FLASH design:
 - Widespread:
 - E-XFEL, FLASH, ESS, GSI, CERN-SPS, Sirius, CANDLE, SXFEL, SHINE, FLUTE, CANDLE, ELBE, AS, ADS, MESA – not shown in the Table: bERLinPRO, TARLA, NICA and others
 - Mature hardware market _
 - Digitizers and Frequency converters
 - RF Backplane and eRTM 14-15 (uLOG and WR)
- Other LLRF architectures
 - KEK
 - Spring-8
 - J-PARC
 - ORNL (SNS)
 - APS-U
 - FRIB
 - Diamond (mostly MicroTCA.0) _
 - Soleil (evaluating) _



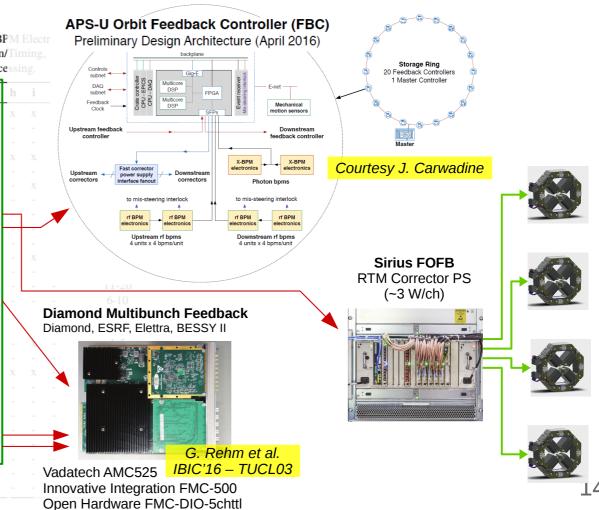

BPM Electronics

Х

Table 1: MTCA.4 projects on accelerator facilities (non-exhaustive d) Beam Diagnostics (other than BPM and BAM Electronics), Feedback Control, h) Image Processing, i) Experiment Control, j) M

Facility	Location	a
DESY (E-XFEL, FLASH) [39]	Germany	х
ESS [40, 41]	Sweden	х
ORNL (SNS) [42]		
GSI (FAIR) [43]	Germany	х
Spring-8/SACLA [44, 45]	Japan	х
FRIB [47]	USA	-
LNLS (Sirius) [20]	Brazil	х
IHEP (HEPS)	China	х
ELI Beamlines [49]	Czech Republic	
PAL (PAL-XFEL)	South Korea	-
KEK (SuperKEKB, STF-2) [51]	Japan	х
KIT (FLUTE) [53]	Germany	х
USTC (HLS-II)	China	х

*MicroTCA.0


13

Feedback Control

Table 1: MTCA.4 projects on accelerator facilities (non-exhaustive list). a) LLRF, b) BPM Electr d) Beam Diagnostics (other than BPM and BAM Electronics), e) Synchronization/Timing, Feedback Control, h) Image Processing, i) Experiment Control, j) Massive Data Processing.

Facility	Location	a	b	c	d	e	f	g	h	i
DESY (E-XFEL, FLASH) [39]	Germany	х	х	x	x	x	x	x	х	
ESS [40, 41]	Sweden							-	-	
ORNL (SNS) [42]	USA	х	-	-	-	-	х	х	-	
GSI (FAIR) [43]	Germany	х	х	-	х	х	-	х	x	
Spring-8/SACLA [44, 45]	Japan	x	х	-	х	х	-	х	-	
CERN (SPS) [46]	Switzerland	х	-	-	-	х	-	х	-	
FRIB [47]								-	-	
LNLS (Sirius) [20]	Brazil	х	х	-	-	х	-	х		-
APS-U [48]	USA	х	-	-	х	-	-	х	-	
IHEP (HEPS)								-	-	-
									-	X
								-	-	-
CSNS (IHEP)								-	-	
Diamond [50]	UK	х	-	-	х	-	-	х	-	
									\backslash	
								-	- `	\ -
KIT (FLUTE) [53]	Germany	x	х	-	х	х	-	х	-	
								-	X	
								-	-	
								-	-	
									-	
Elettra	Italy	-	-	-	-	-	-	х		
ESRF	France	-	-	-	-	-	-	х		
								-	-	
								-		

Feedback Control

Table 1: MTCA.4 projects on accelerator facilities (non-exhaustive list). a) LLRF, b) BPM Elect d) Beam Diagnostics (other than BPM and BAM Electronics), e) Synchronization/Timins Feedback Control, h) Image Processing, i) Experiment Control, j) Massive Data Processing.

eedback Control, h) Image Process	sing, i) Experiment	t Cor	ntrol	j) N	Aassi	ive I	Data	Proc	essi			CPS RF-synchro	Fibers to/from Cl	f _{REV}	WR 🖛
Facility	Location	a	b	c	d	e	f	g	h	i	f _{REVinj}	WR		RF.EXT	
DESY (E-XFEL, FLASH) [39]	Germany	х	х	х	х	х	х	х	х		f _{RFinj} ◀	^	RF trigg		с
ESS [40, 41]	Sweden						х		-				(BQM, MR,) f _{REV} -	
ORNL (SNS) [42]	USA	х	-	-	-	-	х	х				i i	1	IRF -	
GSI (FAIR) [43]	Germany	х	х	-	х	х	-	х	X				Surface build		
Spring-8/SACLA [44, 45]	Japan	х	х	-	х	х	-	х	-			i	(faraday	cage)	
CERN (SPS) [46]	Switzerland	х	-	-	-	х	-	х		-			1		
FRIB [47]							х	-	-				ł	RX TX	WR I
LNLS (Sirius) [20]	Brazil	х	х	-	-	х	-	х	-				ł	Cavity	Ca
APS-U [48]	USA	х	-	-	х	-	-	х	-				L.	Controlle	r Con
							Х		-						
									-				Surface buildi		Y
							-	-	-					ial lide	lide
CSNS (IHEP)							-	-	-					iveguid	waveguide
Diamond [50]	UK	х	-	-	х	-	-	х	-				/	[®]	
							-	-	-				SPS Tunn	el 🔽	
							-	-	-				Beam		
KIT (FLUTE) [53]	Germany	х	х	-	х	х	-	х	-						
							-		-				l,		
							-	-	X				СН	gmann e	t al
							-	-						•	
							-				-			9 - THPR	
							Х	-			ne (ERN	SPS LOW	Level R	F upg
Elettra	Italy	-	-	-	-	-	-	х	-						
ESRF	France	-	-	-	-	-	-	х	-						
									-						Wh
												10	and ref	locks dist	
												LO			induced

upgrade Project" White Rabbit eRTM 15 uted over RF Backplane https://ohwr.org/project/ertm15-llrf-wr/wikis/home

f_{C.e}

coaxial

TX WR

ттт

TWC800

Cavity

Controller

SPS fRF,e

RF-Synchro

Fibers to/from LHC

Fibers to SPS BA's

Fibers to/from CPS

CPS

TDC AT(frev , fC ext)

ADC △ △ Φ(RF, RF ext)

Beam Control

Σ Vcav

g

2.5

WR TX TX

Cavity

Controller

coaxial

Σ

TOTOT

ттт

TWC200

dV, dP

WR

RX

B-field

 δR_{beam}

Setpoints

Master clock

RX RX TX TX WR

Cavity

Controller

TX

coaxial

oaxial

Σ

TOTO

ТТТ

TWC200

6x

10MHz

FTWs.

1.25Gbps

>6.4Gbps

>6.4Gbps

1.25Gbps

WR

Switch

WR TX WR Radial

position

Beam

phase

axia

Phase WCM

≥ 13

WR

Switch

Ref magnet

B-field

WR 6

Radial

Pick-up(s) Pick-up(s)

Other Diagnostics

Sirius, FRIB, ESS

Table 1: MTCA.4 projects on accelerator facilities (non-exhaustive list). a) LLRF, b) (XBPM, ion chamber, profile monitor, d) Beam Diagnostics (other than BPM and BAM Electronics), e) Synchronization/Timing, f) icBLM, GRID), g) Feedback Control, h) Image Processing, i) Experiment Control, j) Massive Data Processing.

Facility	Location	a	b	c	d	-
DESY (E-XFEL, FLASH) [39]	Germany	х	x	x	x	ŀ
ESS [40, 41]	Sweden	х	х	-	х	
ORNL (SNS) [42]						
GSI (FAIR) [43]	Germany	х	х	-	х	
Spring-8/SACLA [44, 45]	Japan	х	х	-	х	
CERN (SPS) [46]	Switzerland					
FRIB [47]	USA	-	х	-	х	
					-	
APS-U [48]	USA	х	-	-	х	
					-	
					-	
					-	
Diamond [50]	UK	х	-	-	х	
					-	
					-	
KIT (FLUTE) [53]	Germany	х	х	-	х	
CANDLE [54]	Armenia	х	-	-	х	
				-	-	
JGU (MESA [59])	Germany	Х	-	-	-	_

CAENels FMC-Pico-1M4 CAENels DAMC-FMC25 (FRIB, ESS) Open Hardware AMC FMC Carrier (Sirius)

Possible applications on Diagnostics

- RF Diagnostics
- XBPM
- Ion chambers
- DCCT / ACCT / ICT / FCT
- Filling Pattern Monitor
- Screen Monitors
- Wire-scanners
- Slits / Scrapers / Collimators (Motor-based)
- Laser Synch./Modulation (Piezo-based)
- Faraday Cup
- Bunch Purity Monitor
- Particle Detectors

GSI Particle Detectors -Discriminator+Scaler

Struck SIS8800 S

Struck SIS8980

ELI-Beamlines Fast Digitizer (10 GS/s – 14-bit)

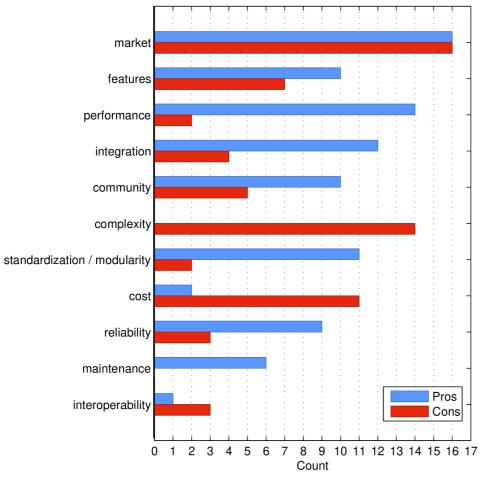
Image Processing

🗼 sirius

Table 1: MTCA.4 projects on accelerator facilities (non-exhaustive list). a) LLRF, b) BPM Electronics, c) BAM Electronics, d) Beam Diagnostics (other than BPM and BAM Electronics), e) Synchronization/Timing, f) Machine Protection, g) Feedback Control, h) Image Processing, i) Experiment Control, j) Massive Data Processing.

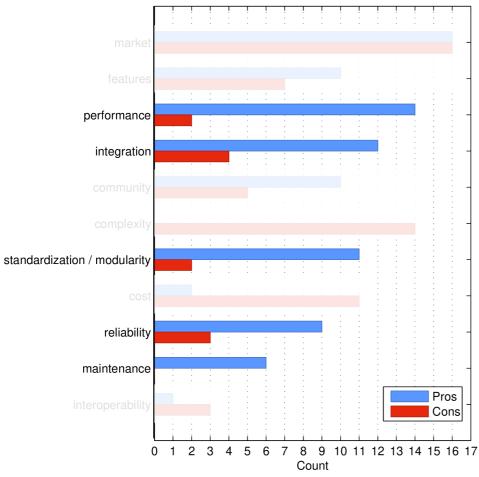
										_		
Facility	Location	a	b	c	d	e	f	g	h	i	j	Number of Crates
DESY (E-XFEL, FLASH) [39]	Germany	х	х	х	х	х	х	х	х	х	х	
										-		
ORNL (SNS) [42]											X	
GSI (FAIR) [43]	Germany	х	х	-	х	х	-	х	х	x		
										-	-	
										х		
										-		
										-		
										х		
										-		
										-		
										-		
										х		
CANDLE [54]										-		
Soleil	France	х	-	-	-	-	-	-	х	х		
										-	-	
JGU (MESA [59])	Germany											

- Today:
 - Processing on CPUs —
 - DESY (E-XFEL)
 - GSI (FAIR)
 - Spring-8 MicroTCA.0
 - Soleil (planning) •
 - MTCA TechLab (DESY) R&D on GigE _ Vision
- Future: •
 - Image processing on AMC FPGA _
 - Process at >100 fps —
 - Opens up possibilities for fast coupling and beam size control



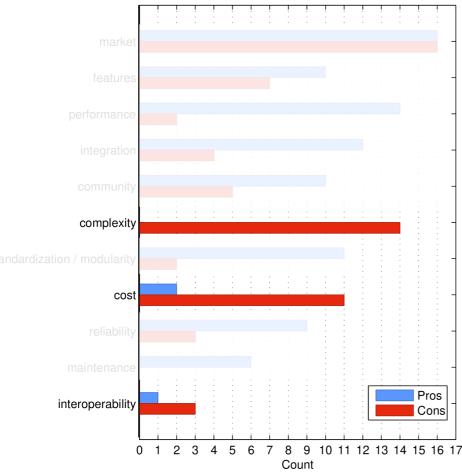
What are the perceived **strengths** of MicroTCA.4 for your use cases? (pros)

What are the perceived **downsides** and **flaws** of the MicroTCA.4 standard and "ecosystem"? (cons)


Survey results – pros and cons

- 27 facilities have replied (including Sirius)
- **159** mentions of strengths, downsides or flaws of MicroTCA.4
 - 92 pros
 - 67 cons
- 3 respondents: no downsides or flaws at all

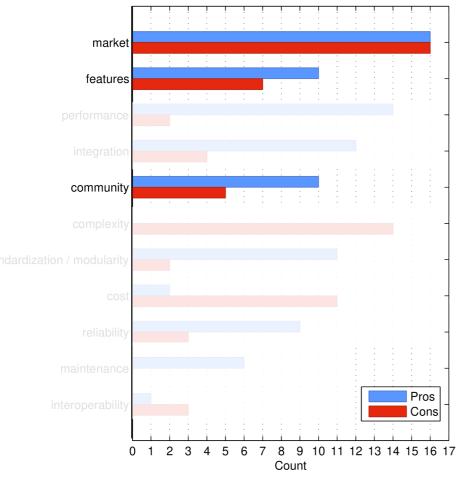
Survey results – mostly pros


- Performance
 - high data bandwidth
 - high processing power
 - good analog signal quality
 - Bad: PCIe bandwidth (for high density camera aggregation), JSM
- Integration
 - High channel density, high compactness, useful services in the crate (CPU, timing, analog I/O, network, RF infrastructure)
 - Bad: lack of unified gateware/software frameworks

Standardization

- Well defined standard, good modularity choices
- Bad: standard still in evolution
- Reliability
 - In general users report high MTBF
 - Bad: some has problems on system reset and failover
- Maintenance
 - Remote hardware management capabilities, hot swap and serviceability are great

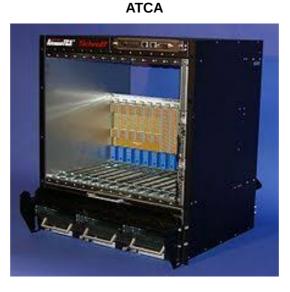
Survey results – mostly cons


- Complexity
 - Steep learning curve
 - Low-level FPGA programming as entry point
 - IPMI implementations (MMC and MCMC)
- Cost
 - Too high (11 replies)
 - Remark: too high for sparsely populated crates (1 reply)
 - Good: cost per channel is good (2 replies)

• Interoperability

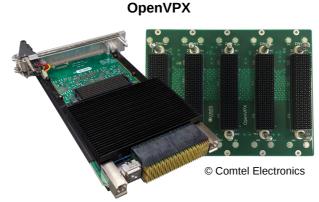
- Interoperability among different vendors
- Good: interoperability is good (1 reply)

Survey results – mixed opinions



- Market
 - Good and Bad:
 - Market size / number of suppliers
 - Products quality and diversity
 - Technical support and documentation
 - Long-term market (sustainability)
- Features
 - Good:
 - RTM, Fat pipes, RF backplane, Point-to-point links, e-keying
 - Bad:
 - · Mechanical insertion and removal of modules
 - Lack of star or mesh backplane topologies
 - PCB sizes
- Community
 - Good:
 - Satisfied with the fact that many laboratories adopting MicroTCA.4
 - Expectations of collaboration and design reuse
 - Bad:
 - Lack of open source solutions (4 replies)
 - High and harmful diversity of MMC projects (1 reply)

"Competitor" standards


- ATCA
 - Acceleratos: SLAC
 - Fusion: ITER, IPFN
 - Several HEP Experiments
 - CMS (LHC) moved from MTCA to ATCA for more real estate on the PCB and more power.

CompactPCI

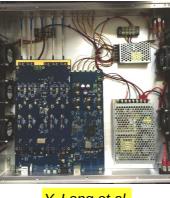
 Out of scope: VME, openVPX, cPCI, PXIe, NI cRIO and Single Board Computers (SBC), etc.

PXIe

"Competitor" paradigm

- Network-attached devices (NAD) (or standalone or "pizza box")
- Standards (e.g. Ethernet, FMC, mechanics)

Elettra BPM Platform Dual FMC carrier (HPC, LPC)


G. Brajnik et al. IBIC'19 – TUPP003

Non-exhaustive listing:

PSI DBPM3 Platform

SINAP DBPM Platform

Y. Leng et al. FLS'18 **LBNL Marble** may be mounted as an AMC dual FMC carrier

L. Doolittle et al. https://github.com/BerkeleyLab/Marble

Soleil / Diamond PandaBox FMC carrier / targets experiment control

Y. M. Abiven et al. ICALEPCS'17 - TUAPL05

Topics for discussion

- 🗼 sirius
- The community is mostly happy with:
 - Performance
 - Integration —
 - Maintenance capabilities —
 - Standard quality
 - Reliability
- The main MicroTCA.4 issues, as seen by the community, are: •
 - Complexity
 - Cost
 - Market of COTS products —
 - Community
 - Interoperability —
- How to solve the issues? •

Topics for discussion

- Cost and Market
 - Some few classes of modules have a great diversity of designs (AMC FMC carriers, AMC CPUs, AMC Timing Receivers), all others have often only 1 or 2 suppliers → high price risk
 - At LNLS we support the open hardware approach
 - Designs owned by the lab manufacturing and support by the companies with no exclusivity
 - · Mixing of open and non-open hardware modules

Community

- "This community should organize a forum/wiki/documentation website" – Tobias Hoffmann (GSI)

Interoperability

- "I think the MMC part is the key. MTCA realizes the complicated functions (redundancy, hot-swap, etc) with the MMC. If MMC design becomes common, more companies in Japan will produce AMCs." – Fumihiko Tamura (J-PARC)
- There are many MMC implementations around couldn't we converge to an open source solution?
- Complexity
 - Need more "starting kits" for getting boards working out of the box, e.g.: Diamond MBF documentation

Acknowledgment

- 🔸 sirius
- Yves-Marie Abiven (Soleil)
- Jiaoni Bai (MESA)
- Benoît Roche and Nicolas Janvier (ESRF)
- Tim Berenc, Nick Sereno and Steven Shoaf (APS)
- Fumihiko Tamura (J-PARC)
- Gabriele Brajnik, Giulio Gaio and Stefano Cleva (Elettra)
- Gayane Amatuni (CANDLE)
- Gregoire Hagmann, Markus Joos, Magnus Hansen and Hannes Sakulin, Tomasz Wlostowski and Javier Serrano (CERN)
- Timo Korhonen, João Paulo Martins and Rafael Baron (ESS)
- Klaus Zenker (HZDR)
- Krszystof Czuba (WUT)
- Yongbin Leng (SINAP)
- Adam Michalczyk, Eugene Tan, Ross Hogan and Simin Chen (ANSTO)
- Rob Michnoff (BNL)
- Jack Naylon and Birgit Plötzeneder (ELI Beamlines)
- Guenther Rehm (Diamond)
- Nigel Smale (KIT)
- Timo Korhonen (ESS)

- Sven Stubbe, Thomas Walter, Kay Rehlich and Holger Schlarb (DESY)
- Tobias Hoffmann (GSI)
- Peter Leban (I-Tech)
- Changbun Kim (PAL)
- Zeran Zhou and Gongfa Liu (USTC)
- Junhui Yue, Fang Liu, Xinpeng Ma, Jungang Li and Zhencheng Mu (IHEP)
- Yuhui Guo (IMP/CAS)
- Scott Cogan (FRIB)
- Hirokazu Maesaka (Spring-8)
- Tetsuya Kobayashi (KEK)
- Eric Breeding, Doug Curry and Karen White (ORNL)
- Georg Hoffstaetter (Cornell Univ.)
- Rod Nussbaumer and Pierre Amaudruz (TRIUMF)
- Glen Wrigth (CLS)
- Ubaldo Irizo (ALBA)
- Kuo-Tung Hsu (NSRRC)
- Wojciech Kitka (SOLARIS)
- Andreas Schälike and Pablo Fernandez (HZB)

Thank you!

Brazilian Synchrotron Light Laboratory