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Basic definitions

Consider a mapping (map) T : M — M defined by a function f

Cn+1 — f(Cn), C,' € M.
Manifold M can be R”, C", S”, T", etc
The trajectory of (j is the finite set

{0, T(), T?(Co), - - -, T"(¢o) }

The orbit of (p, is a set of all points that can be reached

{--T72(%), T7*(Go): Cos T(G0)s T?(Go)s - - -}

The n-cycle (or periodic orbit of period n) is a solution of

T"(¢o) = Co
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Symplectic mappings of the plane

We will consider area-preserving mappings of the plane

"= ’Eq,p), det [8q’/8q 8q’/6p]

op'/oq 0p'/op

p

Identity, Id Rotation, Rot Reflection®**, Ref
10 cosf —sinf cos20  sin20
01 sinf  cos@ sin20 — cos 20
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Integrable systems

A map T in the plane is called integrable, if there exists a non-
constant real valued continuous functions K(gq, p), called integral,
which is invariant under T:

Y(a,p):  K(g,p) =K(d,p)

where primes denote the application of the map, (¢, p') = T(q, p).

Example: Rotation transformation

Rot(f): ¢ = q cosf — psinf
p'=¢qsinf + p cosf

has the integral K(q, p) = ¢° + p.
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McMillan form of the map

McMillan considered a special form of the map
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1D accelerator lattice with thin nonlinear lens, T = F o M
Ne [y}/_[cos¢+asin¢ B sin® ] [y}

y —y sin® cos® —asind| |y

S EEAL

where o, 8 and «y are Courant-Snyder parameters at the thin lens
location, and, ® is the betatron phase advance of one period.

Mapping in McMillan form after CT to (g, p), T = F o Rot(—m/2)

a=yY,
p=y(cos®+ asin®)+y S sind,

F(q) =2q cos® + S F(q) sin®|.
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Example 1: Standard map/Chirikov-Taylor map/Chirikov

standard map (f = cos p)

AE 1 =AE,+ eV (sing, — sinps)

¢n+1 = ¢n + %AE{H_I

&~

7))
00 02 04 06 08410 00 02 04 06 08410

0.0

Tim Zolkin Canonical perturbation theory for symplectic mappings



Example 2: Hénon quadratic map (f = p?)
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Turaev theorem

INSTITUTE OF PHYSICS PUBLISHING NONLINEARITY

Nonlinearity 16 (2003) 123-135 PII: S0951-7715(03)35323-X

Polynomial approximations of symplectic dynamics
and richness of chaos in non-hyperbolic
area-preserving maps

Dmitry Turaev
Recommended by C Liverani

Abstract

It is shown that every symplectic diffeomorphism of R*" can be approximated,
in the C*-topology, on any compact set, by some iteration of some map of
the form (x,y) —= (y+n,—x + VV(y)) where x € R", y € R", and V
is a polynomial R” — R and 5 € R" is a constant vector. For the case of
area-preserving maps (i.e. n = 1), it is shown how this result can be applied to
prove that C"-universal maps (a map is universal if its iterations approximate
dynamics of all C"-smooth area-preserving maps altogether) are dense in the
C"-topology in the Newhouse regions.
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1. PERTURBATION THEORY
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Consider a map in McMillan form:
T: q =p,
p=—q+f(p),

where function f(p) is of the class C> and will be referred to as a
force function, or simply force.

In order to construct a perturbation theory, we shall introduce a small
positive parameter € characterizing the amplitude of oscillations. It
can be done using a change of variables (g, p) — €(q, p):

T: q=p
pP=—q+if(ep)=—qg+ap+esp?+e5pi+....
where we expanded the force function in a power series of (e p) and
a=0,f(0), b=053f(0), c=083f(0),
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Linearization of map

p

—q+ap+e%p2+e2§p3+....

Jacobian of transformation

aq’
0,
JT: 8;’/

%]

Courant-Snyder invariant

CS.=p®>—apqg+q°

Betatron frequency

M:

a
—— arccos —
™

2
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We seek for an invariant of motion expanded in powers of a small
parameter:

KM =Ko+ ek + Kot ... +€"Kn
such that IC,, are degree (m + 2) polynomials
Ko= GCop*+ Ciipq + Co2q°,

Ki=Gop*+ Gip’q+ Copq®+ Gos g,
Ko = Cagp*+ Gip3qg+ Gpp?q® + Cizpqa® + Cou g,
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Due to the first symmetry, K(q, p) = K(p, q), it is convenient to

introduce the following notations:
Y=p+gq M=pgq CS.=Y?—(2+a)N=p®—apqg+q°
Then we perform the expansion for even and odd orders of PT as
Ko =C.S.
Ky =AY NE

Ko=AP N2 4| c®cs?

Ks =AY N2y 4 AP nxcs.

Ko=AYM 4+ A m2cs. +|c®cs?

Ks = AP 35 + AP m2sC.s. + AP Ny c.s.2
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1. Canonical change of variables to Floquet coordinates

g=(1- 32/4)1/4 V2 J cos(p) + 2 (1 - 32/4)_1/4 V2 J sin(p),
p=(1-2%/4)"* V2 Jsin(),

2. Rewriting the residual in terms of (J, )

It is periodic function of ¢, so its average over a full period
vanishes:

27
/ [’C@)(q’, p) - KP(q, p)} dp = 0.
0

3. Minimization of the average of the squared residual

2m 2
h= [ k@) - kDa.p)] dp

and solve for C; from dicl h=0
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Approximated invariant for Hénon map

=08 EEme +(b M2+ ¢ C.S. )

b (rf; sh2 [WS 9 cl} snC. S)

(i
<’C.£1>)<> 1f2r3CS —rlrzzneb
(Kgé)() =nnrnrrC.S. —nnrXlleb+ (r1r2 N2 + % 0.5.2) €2 p2
<’C£Z’>)<> rirorsrars C.S. — rirrars X Meb+
11 (s T2+ B CS2) @02~ (REMP +7TRENCS.) 0
where
n=a—2 n=a+2 rn=a+1
n=a  =(at ) a1
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a. Resonance cases (Sextupole on a 1/4 resonance)

Tim Zolkin Canonical perturbation theory for symplectic mappings



Islands (Octupole below 1/4 resonance)
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c. Unstable fixed point (Octupole below 1/2 resonance)
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d. Frequency as a function of amplitude
(Octupole above 1/4 resonance)

v v
0.25 0.25
0.2 ~
0.15
0.1 0.1
0.05 0.2 N
0 02 04 06 08 qo J

0 02 04 06 08 qo 01 02 03 04

Tim Zolkin Canonical perturbation theory for symplectic mappings



2. DELIVERY RING EXTRACTION FOR Mu2e
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Implementation of Resonant Extraction in the Delivery

Ring for Mu2e

Extraction in SS 20-30 352030
* Extractionin -
* Electro-static septa Extfa“w" e M3 - protons from RR
=7 T
* 2 families of harmonic e o

o / \ '\ "».,.
& “,
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. |MI Ze:::; E&: septa kicker —i
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Tune ramp
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Tracking with 6 sextupoles
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s. tracking
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3. NONLINEAR OPTICAL FUNCTIONS
AND
GENERALIZED COURANT — SNYDER INVARIANT
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Nonlinear optical functions

inv(s) = a(s) p* + B(s) pg +(5) ¢° + 6(s)p> g+ e(s) pg® +

C.S. sextupoles

+ ((s)p*d* + n(s)C.8.2
—_—— —_———

octupoles  2nd order correction

m Sextupole and octupole terms are in the form of McMillan
integrable mappings

m Estimate of dynamical aperture near 1st, 2nd, 3rd and 4th
order resonances (critical points of the invariant)

m Distortion of the ellipse trajectories on larger amplitudes (A,
O, C- or S-shapes)

m Amplitude dependent betatron frequency (qo, po)
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Example for Hénon octupole map
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We developed a very powerful tool for studying discrete
transformations

m Relative mathematical simplicity allows higer order analysis

m Fast estimate of dynamic aperture and frequency spread
without exact tracking (minimization of losses, brightness
increment etc.)

m Optimization of accelerator design or improvement procedure

m Analytical and semi-analytical models are helping us to
understand and verify our numerical simulations

m Introduction of nonlinear optical functions
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