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The Large Hadron Collider (LHC)
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Nonlinear optics at injection dominated by errors in main arc
dipoles and main arc quads
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Nonlinear optics at injection dominated by errors in main arc
dipoles and main arc quads
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Nonlinear optics at injection dominated by errors in main arc
dipoles and main arc quads
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Largest sources of nonlinear optics errors at end-of-squeeze
are in the triplets and separation dipoles




Dedicated nonlinear correctors left and
right of the experimental IRs
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LHC Optics Measurement & Correction (OMC) team, 2017




2 main category of beam-based optics activity:

» Commissioning
(1month at start of year + extra for special optics)
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AP/B,

Local optics correction, LHCEZ, B*=D 6m
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Nonlinear optics is becoming more and more important

e Since 2017 spend comparable amount of time in commissioning on nonlinear as linear

* Significantly more time spent on nonlinear optics MDs
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What have we been getting up to
in the control room?
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First task (circa. 2011-12) was characterization of residual
nonlinearities at injection (nominal corrections applied)
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Decapole correction observed to generate very large AQ”

» Consistent with systematic 0.25mm offset of all decapole spools

Nominal correction’ had substantially
increased the octupole errors

Beam-based nonlinear chromaticity correction
incorporated into operation since 2015




In Lumi-Production have strong octupoles for Landau damping

» Once knowledge from NL-chroma studies included model detuning agrees to =10%
Measurement of nonlinear observables in the Large Hadron Collider using kicked beams, PRAB 17, 081002
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In Lumi-Production have strong octupoles for Landau damping

» Once knowledge from NL-chroma studies included model detuning agrees to =10%
Measurement of nonlinear observables in the Large Hadron Collider using kicked beams, PRAB 17, 081002
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Linear coupling causes large changes to amplitude
detuning in simulation & measurement

operational configuration at injection, June 2012
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Linear coupling is the single largest source of uncertainty and variability
in the nonlinear optics of the LHC:
» By extension also critical for Landau damping in LHC




Observe highly nonlinear pattern of detuning when
approaching the (Qx_Qy) resonance (measurement & simulation)

» Extremely sensitive to unperturbed working point

Simulated detuning approaching the (@ —@,,) resonance
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Usually we consider change of Q,,, with ], ,, :

» Instead consider change of tune separation vs action
» Observe saturation of the tune separation far in excess of linear 4Q,,,;,,
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Tried to interpret via an Amplitude Dependent Closest Tune Approach
Measurement of nonlinear observables in the Large Hadron Collider using kicked beams, PRAB 17, 081002




2 sources identified in simulation & tested with beam:

» Linear coupling + normal octupole
Nonlinear coupling studies in the LHC, TUPTY04, IPAC’'15

> Skew octupole + normal octupole
Amplitude dependent closest tune approach generated by normal and skew octupoles |PAC'17 WEPIK091

CERN-ACC-NOTE-2018-0027
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Footprint distortion from uncompensated skew-octupoles a
potential issue for Landau damping in HL-LHC




Some first attempts at theoretical predictions & validation:

R.Tomas, T.Persson,E.Maclean, Amplitude dependent closest tune approach, PRAB 19, 071003
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Classical linear coupling measurement measures AQ,i, by using
quad trim to try and force tunes to the (), — Q, resonance
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Try classical AQj, measurement, but having first kicked beams
with MKA (closest approach of a phase space doughnut)
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In Lumi-Production have strong octupoles for Landau damping

0.33

0.32 |
o 031

0.30

0.29

40

6o

o

=

8o

100
1 1

0.29

0.28 [,
o 027

0.26

0.25

4c

6o

8o

I L
100

0.0

0.2

04 06
2J, [um]

0.8

Can also detune towards
4Q, &30,

0.10

0.05 r

0.00 ¢

Py/Pq




Measured turn-by-turn BPM data from a single kick
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Some interesting consequences from low-order resonances

— e.g. abrupt beam-losses during octupole trim

Octupole corrector current [A]
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Particles trapped in islands are transported out to larger amplitudes during slow decrease
of octupole strength, e.g. simulated octupole rampdown over 100,000 turns:
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Particles trapped in islands are transported out to larger amplitudes during slow decrease
of octupole strength, e.g. simulated octupole rampdown over 100,000 turns:
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Particles trapped in islands are transported out to larger amplitudes during slow decrease
of octupole strength, e.g. simulated octupole rampdown over 100,000 turns:
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Particles trapped in islands are transported out to larger amplitudes during slow decrease
of octupole strength, e.g. simulated octupole rampdown over 100,000 turns:
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Particles trapped in islands are transported out to larger amplitudes during slow decrease
of octupole strength, e.g. simulated octupole rampdown over 100,000 turns:

TURN = 50,000 - 60,000
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Particles trapped in islands are transported out to larger amplitudes during slow decrease
of octupole strength, e.g. simulated octupole rampdown over 100,000 turns:
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Particles trapped in islands are transported out to larger amplitudes during slow decrease
of octupole strength, e.g. simulated octupole rampdown over 100,000 turns:

TURN = 70,000 - 80,000
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Multiple beam-based studies of dynamic aperture (DA)

» Amplitude below which particles survive for a given number of turns

Octupole corrector current [A]
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Want to test how well the predicted dynamic aperture
agrees with the real machine

Traditional measurement via single kicks
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Surviving Intensity 30s after kick [%]

LHC 30s DA at nominal injection settings (2012)

Measurement of nonlinear observables in the Large Hadron Collider using kicked beams, PRAB 17, 081002
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Surviving Intensity 30s after kick [%]
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Aperture inferred from measured loss data -
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Need alternative technique Before ADT blow-up —
After ADT blow-up —

for DA measurement 6.5TeV

> Blow up bunches to large
emittance with damper

» Slow heating limits quench risk
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Compared average DA vs time for various configurations of

octupole correctors in arcs
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Vertical amplitude [03 75,,15q]

Probe shape of DA by blowing up inonly H or V

e.g. strong b6 source at (6.5TeV)
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Need alternative method to measure amplitude

detuning at 6.5TeV = excite with an AC-dipole!

* Repeated excitation of the same bunch without emittance blowup

e 6000 turns of TbT data without decoherence

‘ —— AC Dipole — Single Kick

0.5

0 500 1000 1500 2000

0.0 +

0.5 |

AC-dipole waveform [A]

Y [mm]

00 02 04 06 08 1.0
Time since trigger [s] 0 1000 2000 3000 4000 5000 6000
Number of turns




Need alternative method to measure amplitude
detuning at 6.5TeV = excite with an AC-dipole!

* Repeated excitation of the same bunch without emittance blowup

e 6000 turns of TbT data without decoherence
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Measure change of
natural tune with

action of the
driven oscillation
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AC-dipole detuning related to that of free kicks, but not equal!

(e.g. linear detuning from b4 = factor 2 in direct detuning coefficients and factor 1 in cross-terms)
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Main use so far is to study footprint distortion during the B*- squeeze
due to b4 errors in ATLAS/CMS IRs




But can also study decapole & dodecapole errors via detuning
» via feed-down to first-order amplitude detuning
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Study decapole & dodecapole sources
» via second-order amplitude detuning
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RDTs provide complementary observable for many multipoles
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From F.Carlier (CERN) Ph.D thesis: feed-down to skew octupole RDT
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A new actlwty for the opttcs team since 2017:
nonlinearoptics commissioning at 6.5TeV
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Several clear operational improvements due to inclusion of
nonlinear optics commissioning: e.g. linear optics control
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Significant reduction in Landau octupole strength required to maintain
Landau damping since introduction of nonlinear optics commissioning
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Significant reduction in Landau octupole strength reqmred to mamtam
Landau damping since introduction of nonlipsa

Improvement associated
with correction of
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Observe pronounced effect from nonlinear optics
commissioning on lifetime at low-*
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More and more emphasis being placed on nonlinear
optics at the LHC & in preparation for HL-LHC

Reflected in the steady increase of time allocated for
beam-based studies throughout Runl and Run2

» Identify limitations in our understanding of the LHC model and
LHC single particle dynamics

> Develop / refine measurement techniques for nonlinear optics
at high energy where new tools are needed

» Use a wide variety of observables to correct the nonlinear optics
of LHC & improve performance
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Decapole correction generates very large AQ”

» Consistent with systematic 0.25mm offset of all decapole spools

Nominal
|\ [ ] ’
s correction
d increased
octupole
0.27 Unpowered spools =
| Nr.::milnal corre::tionsl = errors
-0.002 0.000 0.002
Ap/pg

Beam-based nonlinear chromaticity correction incorporated
into operation since 2015
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Being explored as potential mechanism for emittance growth in LHC ramp
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Can perform measurements in the LHC to test whether scaling laws for dynamic
aperture can allow extrapolation to long timescales relevant for LHC operation
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LHC dynamic aperture measurement @

Scaling law prediction == b
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AC-dipole DA - Ph.D Thesis of Felix Calier (CERN)

DA of driven oscillations can

be significantly smaller than
that of free oscillations
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Main use so far is to study footprint distortion during
the B*- squeeze due to b4 errors in ATLAS/CMS IRs
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Main use so far is to study footprint distortion during
the B*- squeeze due to b4 errors in ATLAS/CMS IRs
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Main use so far is to study footprint distortion during
the B*- squeeze due to b4 errors in ATLAS/CMS IRs
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Main use so far is to study footprint distortion during
the B*- squeeze due to b4 errors in ATLAS/CMS IRs
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Main use so far is to study footprint distortion during
the B*- squeeze due to b4 errors in ATLAS/CMS IRs
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Main use so far is to study footprint distortion during
the B*- squeeze due to b4 errors in ATLAS/CMS IRs
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Main use so far is to study footprint distortion during
the B*- squeeze due to b4 errors in ATLAS/CMS IRs
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Main use so far is to study footprint distortion during
the B*- squeeze due to b4 errors in ATLAS/CMS IRs
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Main use so far is to study footprint distortion during
the B*- squeeze due to b4 errors in ATLAS/CMS IRs

0.3210¢

6* = 0.33 [m]

0.3205}

0.3195}

0.3095 0.3100 0.3105 0.3110 0.3115

Q.




Main use so far is to study footprint distortion during
the B*- squeeze due to b4 errors in ATLAS/CMS IRs
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Linear coupling is major source of uncertainty in predicted DA
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Linear coupling is major source of uncertainty in predicted DA
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Linear coupling is major source of uncertainty in predicted DA
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Linear coupling is major source of uncertainty in predicted DA
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Linear coupling is major source of uncertainty in predicted DA
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Linear coupling is major source of uncertainty in predicted DA

15 -
|C~] =0.014

RN
o

Vertical amplitude [o']

0 3) 10 15

Horizontal amplitude [o]




Linear coupling is major source of uncertainty in expected DA
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Linear coupling is major source of uncertainty in predicted DA
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» Impact of linear coupling on DA depends on octupoles
» Impact of Landau octupoles on DA depends on coupling




|C~| & normal octupoles could still not fully explain 2012 observations

m Motivated further search in model for mechanisms generating ADECTA

m Predict that a; alone did not generate ADECTA,
but a, + b; would generate ADECTA

Amplitude dependent closest tune approach generated by normal and skew octupoles

E.Maclean, T.Persson, R.Tomas, IPAC’'17 WEPIK091

ay strength [%]
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m ADECTA from a; + by demonstrated in dedicated MD in 2017

E.Maclean,R.Tomas, T.Persson,F.Carlier, CERN-ACC-NOTE-2018-0027













