	2nd DRAFT	
DDCP Protocol Server Operation

Refer to the accompanying ddcpdecls.h file which contains definitive declarations and definitions for all fundamental DDCP data structures, types and constants for the C programming language. Further detailed information may be found in the reference software DDCP client/server project’s Doxygen documentation.

We will use the C programming language here as pseudocode for conveying some design information.

DDCP is an application layer protocol that uses a client-server model, with a given client requesting that a specified access operation be performed on a specified server's data. Every client request is acknowledged by the receiving server with a reply containing the status of the access operation and, if requested, the related data values. This request/reply sequence is referred to as a Transaction.

[image:]
[image:]

DDCP is network communications protocol agnostic allowing the use of any applicable message transport mechanism. At the time of this writing the reference implementation employs the User Datagram Protocol (UDP) networking stack for client/server communications. By way of example any network technology specific values provided here will be for UDP and be noted as such. . Regardless of the underlying network protocol the concept of a network Maximum Transmission Unit (MTU) must be addressed. The MTU for a given DDCP system is configurable but defaults to 9000 bytes. Servers implementing different MTU values can coexist together in a DDCP system. The MTU supported by a given server is made available to clients with the standard MTU feature (See the DDCP Standard Features section below.)

Servers wait for incoming client requests and later send their reply on UDP port number 65000. Client requests may be sent on any free UDP port number. All protocol messages begin with the standard header called DDCPHeader followed by optional payload data. To assure interoperability all protocol headers and payload data are sent in internet (big endian) byte order.

Extended DDCP Networking Support:

It should be noted that some network hardware may expect an MTU of 1500 bytes.
Servers must implement a method for network address resolution, as well as an approach for configuring its network address. The common approach for a network entity is to implement Address Resolution Protocol (ARP), so that commercial network interfaces can resolve the location of a target network address (i.e. MAC and IP address). It is also strongly encouraged that a DDCP server implement ICMP ping responses, as a method for clients and DDCP operators to verify that a server is alive.

There are several approaches DDCP server hardware can take for implementing its configurable network address. However, a default valid address must exist at completion of the power-up sequence. If dynamic network address modification is implemented at the server, it is recommended that it is made available to DDCP clients as a feature.

DDCP servers may choose to implement extra destination handling features. Destination handling would allow specified request responses or specified modes of operation that transmit messages to an arbitrary DDCP client. If multi-destination functionality is implemented at the DDCP server, it is recommended that the handles for this functionality are made available to DDCP clients as server features.

DDCPHeader Structure:

 struct DDCPHeader {

 uint16_t _version; // sender’s protocol version.revision
 uint16_t _slot; // Requests: targeted server ID, Replies: responder's ID
 uint16_t _feature; // server’s data feature number
 uint16_t _operation; // requested data feature operation
 int16_t _status; // message status

 uint16_t _reserved1; // 2 bytes reserved for future use
 uint32_t _reserved2; // 4 bytes reserved for future use

 uint64_t _index; // targeted data initial index
 uint64_t _count; // targeted data number of elements

 uint64_t _payloadBytes; // number of _payload data bytes

 char _payload[0]; // message payload

 } __attribute__((packed)); // 40 bytes

DDCPHeader Nomenclature:

· Request - a protocol message sent from client to server defining a data transaction.
· Reply - a protocol message sent from server to client in response to a given request, and containing the final transaction status as well as any requested data.
· Slot - a numeric logical value that uniquely identifies a server or client 'node' containing protocol addressable data. (e.g., slot 16 might map to a network node with IP address 10.0.0.16 when using UDP transport.)
· Feature - an addressable source/destination data target containing one or more scalar or structured elements (e.g., a single uint32_t value or an array of sixteen PhaseMagnitude structures.). There is a number of standard features which must be provided by all servers. Note: the protocol's index, count, payloadBytes convention does not anticipate dynamic element byte counts.

DDCPHeader Field Definitions:

· Version - Two byte software release code: major.minor, where version = major << 8 + minor. Major and minor are each represented with hex numeric only digits in the range 00..99.
· major - '00..99': Reflects major changes to the protocol API that would require user code recompilation.
· minor - '00..99': Indicates minor revisions, bug corrections or the addition of new features which do not change the protocol API such that user code recompilation is necessary.
· Slot - Logical slot number of the server that is the target of a request.
· Feature - Logical feature number of the data target (e.g., status, gain, phase[n], ...).
· Operation - Operation to be performed on the specified feature as a result of the current request. Defined by the eDDCPOperation enumeration in ddcpdecls.h. Note: the minimum set of server operations contains: read, set, setRead and interrupt.
· Status – message status. Defined by the eDDCPStatus enumeration in ddcpdecls.h.
kOK (zero) on all requests, returns operation status on replies with:
· negative values indicating an error condition,
· positive values providing informational status and
· zero indicating no errors or informational status.
· Reserved1 - 2 bytes reserved for future use.
· Reserved2 - 4 bytes reserved for future use.
· Index - Numeric index of first data element of interest in the specified feature. Index increments by one for each Count.
· Count - Number of data elements of interest in the specified feature.
· PayloadBytes - Byte count of optional payload. A value of zero indicates no payload. If nonzero PayloadBytes must equal Count times the number of bytes of a single feature datum.
· Payload - Optional message feature data content consisting of PayloadBytes of data.

Feature Operation Descriptions:

· kQuery - reads the Feature handler's capability statistics
Client sends kQuery request with no payloadServer replies with struct tQueryData payload which includes:
· eDDCPOperation bitfield list of supported operation codes
· Feature data element byte count
· Feature data element count
· kRead - reads Feature data by index and count
Client sends kRead request with no payload
Server replies with specified data payload
· kSet - sets Feature data by index and count
Client sends kSet request with setting data payload
Server replies with no payload
· kSetRead - sets and then reads Feature data by index and count
Client sends kSet request with setting data payload
Server replies with associated read data payload
· kInterrupt - unsolicited message from Device to Controller
Device's Client sends kInterrupt request with tInterrupt payload
Controller's Server replies with no payload
· kCtrl - sets Feature handler control
Client sends kCtrl request with no payload
Server replies with with no payload
· kRMW - sets Feature data by index and count with Read-Modify-Write instruction
Client sends kRMW request with a single template class RMWInstruction payloadServer replies with the associated data for index and count payload
· kRMW2 - sets Feature data by index and count with Read-Modify-Write instruction pair
Client sends kRMW2 request with a single template class RMW2Instruction payload
Server replies with the associated data for index and count payload

At a minimum support for the Read, Set, SetRead and Ctrl operations is expected in all DDCP client and server implementations although they may be applied on a feature by feature basis. Support for the other operations outlined above is optional for any given server implementation.

Feature Handler kCtrl Operation Details:

The kCtrl operation deserves further attention. The operation's functionality is determined by the Feature's handler so kCtrl will likely behave differently from Feature to Feature. For example a given Feature handler could define kCtrl to be a 'reset' request that sets a state machine to initial conditions while another Feature may process kCtrl as a 'zero' command and reset all feature data elements to zero. For kCtrl requests the meaning of the index and count request header values is also defined by the Feature's handler.

DDCP Request and Reply Headers:

All DDCP client request and server reply messages begin with a standard DDCPHeader. The accompanying document “DDCPRulebook.xlsx” provides specifications for the proper construction of client request and server reply headers based upon the various possible DDCP operations.

DDCP Standard Features:

Each server must support the following standard features at a minimum.

· Feature #0 – TestFeature – The test feature supports Read, Set, SetRead and Ctrl operations for an array of two uint32_t values. At initialization the two test values are set to 0xff005a00 and 0xff005a01 respecitvely.

· Feature #4 – MTUFeature – The MTU feature supports the Read operation only for a single uint32_t value. At initialization the value is set to the MTU supported by the server implementation.

Server Request Processing:

The server receives, processes and replies to client transactions ‘forever’. Given the range of server implementation complexity it is possible that some servers may not be capable of handling multiple simultaneous clients or transactions. The server’s capability in this reguard should be well documented. .

All incoming requests must ultimately be acknowledged with a corresponding reply. A reply message header may be built from a modified copy of the request header as follows:

 replyHeader = requestHeader; // make a copy
 replyHeader._version = kVersion; // kVersion from ddcpdecls.h
 replyHeader._slot = kServerSlot; // kServerSlot is local hardware slot #
 replyHeader._Reserved1 = 0; // must be zero
 replyHeader._reserved2 = 0; // must be zero
 replyHeader._payloadBytes = 0; // if error no payload - updatedif necessary

At this point the server should attempt to validate the incoming request (see Request Validation below.) If the server is unable to process a request for any reason it should set the reply header status accordingly:

 replyHeader._status = k????Code; // appropriate eDDCPStatus value from ddcpdecls.h

and return the reply header only to the client.

If the server is able to successfully process a request it should perform the requested operation on the feature data, set the reply header’s status to kAOK, set the reply header’s payload bytes if appropriate and then return the header and any payload to the client.

Request Validation – Defensive Programming:

To enhance overall system stability the server should not assume that incoming requests are ‘perfect.’ The file ddcpserver.cpp contains three utility functions: VerifyRequestIC(), VerifyRequestBC() and VerifyRequest() that together exhaustively validate incoming server requests. That validation code was written for development and testing of the DDCP protocol and may not be practical for pure firmware implementations, but the code does give an indication of the types of checking that can increase the robustness of a server implementation. At a minimum the server should make the following request header field checks:

· _version & kVersionMajorMask matches server’s version & kVersionMajorMask
· _slot matches server’s assigned slot number
· _feature represents an available feature
· _operation is supported for the requested feature
· _index, _count and _index + _count are all supported for the given feature
· _payloadBytes agrees with _count * sizeof(datum) for the given feature

Large Data Processing:

Transactions having request or reply total message byte counts (40 byte header plus payload byte count) of less than the MTU are completed with single messages. However, when a transaction would require a larger message it must be broken into multiple packets, with their own header and payload data. Such large data transactions are handled differently for read and for set operations:
· Large set transactions are broken into multiple requests by the client
· Large read transactions are conducted with a single large client request whose response is broken into multiple smaller replies by the server
Thus, for the server there is no special processing required for large set transactions, but large read transactions require the server to stream multiple reply packets with each sized within the established MTU.

Note: At the time of this writing the firmware implementation of this packet streaming operation is capable of overwhelming some Linux based single core clients. Thus a firmware generated delay was introduced between reply packets to throttle the overall data rate to just over 100 MB/Sec on a 1 GigE network. The delay counter’s modulus, a uint32_t, has been implemented as server feature number three so that the delay can be tuned for optimal overall system performance.

Controller and Device Nodes:

By adding request capability to the server side and request handling capability to the client side we introduce the notion of “Controller” and “Device” nodes. A device is capable of processing client requests as before and adds the ability to make unsolicited requests of its controller. We now have a symmetrical request - reply architecture. These unsolicited requests are primarily to avoid polling the server for an event in the future; the server can indicate an event of interest has occurred on its own accord and the client (the controller) may be interrupted.

Optional Controller/Device Interrupt Handling Process:

By adding an Interrupter feature to the device, and an Interrupt Handler feature to the controller, we now have a low latency capability for a device to invoke interrupt handler code on a controller. The following is a time-ordered narrative of the interrupt request - reply process between a device and a controller.

1) The device provides an interrupter feature with the standard feature number kInterrupterFeature. An interrupter is an array feature with an array element count equal to the number of interrupts supported by the device. The array index value is synonymous with an interrupter's interrupt number with index zero representing the highest interrupt level. Each element of the array is of type tInterrupterConfig, a 32 bit unsigned integer with the following format:

 31 15 0
 +----------------+------------------+
 | Controller's | Controller's |
 | Handler | Handler |
 | Slot | Feature |
 +----------------+------------------+

The Handler Slot is the slot number of the controller and the Handler Feature is the feature number within that controller that will process the interrupt.

When the device's interrupter feature is initialized all elements of the array contain zero thereby disabling all interrupts. When any element is set to nonzero by a controller the associated interrupt number is considered to be enabled. If a controller subsequently resets an element to zero the associated interrupt number is then considered to be disabled.

2) The controller configures any interrupts of interest in the device's interrupter feature with standard kSet or kSetRead requests. The controller specifies its own slot number and feature number to identify the Interrupt Handler for a given interrupt number.

3) When the device wants to assert a given interrupt it checks the interrupter's array element associated with the interrupt for a nonzero value indicating that the interrupt is enabled and that a controller is ready and able to handle the interrupt. If the interrupt is enabled the device sends an interrupt request to the configured Handler's slot and feature. An interrupt request is of type tInterrupt, a 32 bit unsigned integer with the following format:

 31 15 0
 +-------------+-------------+
 | Device's | Device's |
 | Interrupter | Interrupt |
 | Slot | Number |
 +-------------+-------------+

The Interrupter Slot is the device's slot number and the Interrupt Number is its interrupter's array index tied to the interrupt that is being asserted. Interrupt request messages have the following format and content:

 struct DDCPHeader {

 uint16_t _version; // device's DDCP protocol version

 uint16_t _slot; // Handler slot from interrupter array
 uint16_t _feature; // Handler feature from interrupter array
 uint16_t _operation; // kInterrupt

 int16_t _status; // kAOK
 uint16_t _reserved1; // 0
 uint32_t _reserved2; // 0

 uint64_t _index; // 0
 uint64_t _count; // 1
 uint64_t _payloadBytes; // sizeof(tInterrupt)

 tInterrupt _payload; // interrupt request

 } __attribute__((packed)); //!< 40 bytes

4) When the controller receives the interrupt request message it validates the request, informs the user's application program of the interrupt's Interrupter Slot and Interrupt Number, and then returns a DDCP reply message to acknowledge reception of the interrupt request.

The C++ controller software has three mechanisms to inform the user's application program of an
incoming interrupt:
 - call a user callback function,
 - send a POSIX real-time signal or
 - give a specified POSIX mutex via pthread_mutex_unloc().

The user callback method is likely to have the greatest interrupt acknowledge message latency as the callback return time could be unbounded. The real-time signal and mutex methods introduce a latency based upon the relative priorities of any other tasks in the system. Controller node architects should endeavor to minimize this latency. Interrupt acknowledge messages have the following format and content:

 struct DDCPHeader {

 uint16_t _version; // controller's protocol version

 uint16_t _slot; // Handler slot
 uint16_t _feature; // Handler feature
 uint16_t _operation; // kInterrupt
 int16_t _status; // operation status

 uint16_t _reserved1; // 0
 uint32_t _reserved2; // 0

 uint64_t _index; // 0
 uint64_t _count; // 1
 uint64_t _payloadBytes; // sizeof(tInterrupt)

 tInterrupt _payload; // echo of interrupt request's payload

 } __attribute__((packed)); //!< 40 bytes

Optional Software Interrupt Process:

The device implements a Software Interrupt feature whose feature number may be any user defined value as this is not a standard feature. The software interrupter handles kQuery, kSet and kSetRead operations.

In response to a query operation the software interrupter returns:
 - supportedOps: Query Set SetRead,
 - elementBytes: 4 and
 - elements: 1.

Note that the software interrupter does not support read operations.

The software interrupter feature is a uint32_t value containing a bit field with one bit for each interrupt number, up to a maximum of 32 interrupts.

 31 0
 +-------------+-------------+
 | Interrupt Bit Field |
 +-------------+-------------+

Upon receiving these interrupt requests the software interrupter immediately asks the standard interrupter feature #1 to generate the specified interrupt request(s) by scanning the bit field from bit zero through bit 31. Note: this implies that interrupt number zero is the highest priority. When all requested interrupts have been asserted a reply message is returned to the requesting controller.

End.
20060911
DCV & RAR
image2.jpg

image1.emf

DDCP!
Client

DDCP!
Server

DDCP!
Client

P!
O!
R!
T

P!
O!
R!
T

P!
O!
R!
T

P!
O!
R!
T

P!
O!
R!
T

P!
O!
R!
T

P!
O!
R!
T

P!
O!
R!
T

Master Slave

19103110!
DCV

DDCP System Architecture

Network

Slot 0 Slot 1..n

Interrupter
Supports n Interrupts

Feature #1

Interrupt!
Handler

Feature #n

H!
a!
r!
d!
w!
a!
r!
e

U!
s!
e!
r!
!

S!
o!
f!
t!
w!
a!
r!
e

 User Callback,!
POSIX Signal or!
 POSIX Mutex

DDCP!
Server

Optional

S!
o!
f!
t!
w!
a!
r!
e

Key: DDCP Request flow

DDCP

Client

DDCP

Server

DDCP

Client

P

O

R

T

P

O

R

T

P

O

R

T

P

O

R

T

P

O

R

T

P

O

R

T

P

O

R

T

P

O

R

T

Master Slave

19103110

DCV

DDCP System Architecture

Network

Slot 0 Slot 1..n

Interrupter

Supports n Interrupts

Feature #1

Interrupt

Handler

Feature #n

H

a

r

d

w

a

r

e

U

s

e

r

S

o

f

t

w

a

r

e

 User Callback,

POSIX Signal or

 POSIX Mutex

DDCP

Server

Optional

S

o

f

t

w

a

r

e

Key: DDCP Request ﬂow

