Local Beta Bump -
Beta relations for transfer matricies

July 2, 2020

Consider the transfer matrix for three thin quadrupole correctors, separated by arbitrary transfer

matrices:
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Next we rewrite it in terms of normalized coordinates:
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Each quad matrix can be split into two halves by:
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Now let’s define the transfer matrices from quad-midpoint to quad-midpoint.
M(s3|s1) = B2Q~§/2R21Q1/2B1_1
M(53|31) - B3Q~§/2R32Q2R21Q~1/2B1_1
M(s4|s1) = BaQy*Ri3Q3R32Qo R Qy* By

Assignment 1: Calculate M (sz2|s1), M(s4]s1), and M (s3|s1) for generic values of k1, ko, ks, k4, and
generic phases (¢43,P32,021)-

For a given transfer matrix M (s;|s;), the corresponding beta-matrix Mg(s;|s;) is given by:
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For a; = 0, then ~; = 5[17 and then §; can be calculated to be:

Bi
ﬂj:[ M121 —2M71 Mo M122 ] 01

Bi
B = M7\ B; +M122Bi_1

where My is the upper-left value of M(s;|s;) and My is the upper-right value of M (s;ls;).

Assignment 2: Calculate the 8o, 83, 84 for generic values of k1, ko, k3, k4, generic phases, and for
a given value (.

Assignment 3: For (5, (3, and (4, plug in the symmetric phase-advance conditions and the corre-
sponding local bump conditions:
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Assignment 4: Verify the expression obtained for assignment 2 and/or assignment 3 for an example
local bump calculated by MAD-X.



