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1 Motivation

In general, changing the focusing at one quadrupole corrector in a ring will have an impact on the
beta-function everywhere in a particle accelerator ring. With dipole-correctors, a local effect on the
beam orbit can be accomplished by a sequence of three dipole correctors with a generic phase-advance
between them. It would be valuable to have something analogous for quadrupole correctors, a sequence
of quadrupole correctors with a local-effect on the beta-function (i.e. a nonzero quadrupole correction
with no change to beta functions outside of the quadrupole corrector sequence).

The local quad bump could be used to tune the beta functions in one part of the ring without
adversely affecting another part of the ring. It can also be used to compensate for a missing quadrupole
by using adjacent quadrupoles to provide the same global effect.

2 Three Quad Bump

2.1 Setup

Consider the transfer matrix for three thin quadrupole correctors, separated by arbitrary transfer ma-
trices:

M = Q3T32Q2T21Q1

Qi =

[
1 0
qi 1

]
,

Tji =


√

βj

βi
(cosφji + αi sinφji)

√
βiβj sinφji

− 1+αiαj√
βiβj

sinφji +
αi−αj√
βiβj

cosφji

√
βi

βj
(cosφji − αj sinφji)

 (1)

To simplify the expression, we should rewrite it in terms of normalized coordinates:

Qi = BiQ̃iB
−1
i , Tji = BjRjiB

−1
i ,

Bi =

[ √
βi 0
−αi√
βi

1√
βi

]
, B−1i =

[
1√
βi

0
αi√
βi

√
βi

]
,

Q̃i =

[
1 0
ki 1

]
, Rji =

[
cosφji sinφji
− sinφji cosφji

]
,

M̃ = B−13 MB−11 = Q̃3R32Q̃2R21Q̃1.

ki = βiqi (2)

Now the expression is just thin-kicks separated by rotation matrices. It can be easier to work with the
expression if we can separate the thin kick-perturbation from the identity matrix:

M̃ = (I + k3E0)R32 (I + k2E0)R21 (I + k1E0) ,

I =

[
1 0
0 1

]
, E0 =

[
0 0
1 0

]
. (3)
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2.2 Calculation

Now we need to find the criteria for nontrivial local quad correction consisting of a sequence of three
quadrupoles - i.e. non-zero values of k1, k2, k3 such that M̃(k1, k2, k3) = R32R21 = R31. We write:

��R31 =��R31 + k3E0R31 + k2R32E0R21 + k1R31E0

+ k3k2E0R32E0R21 + k3k1E0R31E0 + k2k1R32E0R21E0

+ k3k2k1E0R32E0R21E0[
0 0
0 0

]
= k3

[
0 0
c31 s31

]
+ k2

[
s32c21 s32s21
c32c21 c32s21

]
+ k1

[
s31 0
c31 0

]
+ k3k2s32

[
0 0
c21 s21

]
+ k3k1

[
s31 0
0 s31

]
+ k2k1

[
s32 0
c32 0

]
s21

+ k3k2k1

[
0 0

s32s21 0

]
(4)

where for brevity I defined:

cosφji ≡ cji, sinφji ≡ sji (5)

Now from Eq. 4 we have obtained four equations for the values of the 2x2 matrix:

0 = k2s32c21 + k1s31 + k3k1s31 + k2k1s32s21 (A.1)

0 = k2s32s21 (A.2)

0 = k3c31 + k2c32c21 + k1c31 + k3k2s32c21 + k2k1c32s21 + k3k2k1s32s21 (A.3)

0 = k3s31 + k2c32s21 + k3k2s32s21 + k3k1s31 (A.4)

From Eq. A.2, we have s32 or s31 must be zero (since k2 6= 0). If s32 = 0 we find from Eq. A.1 that s31
and s21 must be zero. And if s21 = 0 we find from Eq. A.4 that s31 and s32 must be zero.

Since both s31 and s32 are zero, that must mean that φ32 is 0 or π, and φ21 is 0 or π, which means
that c31 = ±a1, c21 = ±b1 and c31 = ±a ±b 1. Using this into Eq. A.3 we write:

0 = ±a ±b [k3 + k2 + k1] (6)

This means our final solution is that the quad kicks are related and that phase-advances φ32 and φ21
should be integer multiples of π:

k2 = −(k1 + k3)

φ21 = n1π

φ32 = n2π (7)

if we let k1 = κ − ε and k3 = κ + ε we see that k2 sets the overall magnitude and that ε is a degree of
freedom that changes the nature of the local beta-bump:

k2 = −2κ

k1 = κ− ε
k3 = κ+ ε

For ε = 0 the bump is symmetric and for ε = ±κ it would be a two quad bump:

2.3 Interpretation

The three-quad bump only works if the phase-advances between the quad kicks are integer multiples of
π. In the Booster, when the tune is νx,y = 6.8 then adjacent Booster cells are separated by a phase
advance (17/30)π ≈ 0.57π. Which means that two Booster cells are separated by phase advance of
(34/30)π = π + 2π/15 ≈ π.

That means we can make a bump at for example QL9 QL11 QL13 and it will be mostly but not com-
pletely local. The nearly local bump can be deconstructed as a completely local bump plus a smaller non-
local error. For a three quad bump the error in Eq. A.2 and Eq. A.3 should be k2 sin(2π/15)2 ≈ 0.17k2 (for
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small k) and for a two quad bump the error in Eq. A.1 and Eq. A.4 should be (1/2)k2 sin(4π/15) ≈ 0.37k2.
Howver the two-quad bump has too much error to use.

If we use three quad-long correctors (or three-quad short correctors), the kick will be stronger in
one plane then the other, but not completely decoupled. For the bump to be local in both planes,
the conditions should be approximately held in both planes. Fortunately, since νx ≈ νy the horizontal
and vertical phase-advances are approximately the same cell-to-cell (although not between shorts and
longs). And for three quad-longs or three-quad shorts, the beta functions should be (approximately)
equal at all three locations, so we don’t necessarily need to take into account the ratio of the beta
functions. So in this case, we find that relation for k is also the relation for the quadrupole currents, i.e.
I QL11 = −(I QL09 + I QL13) and it will local to the ∼17% level in both planes.

The current implementation of the three quad bump in the Booster controls has coefficients of 2.74,
1, 2.74, separated by ≈ π/2 phase advances. This analysis would predict that is not a local bump, the
quad kicks should mostly add up coherently (i.e. rather than cancelling) which should be similar to
adjusting the current of just one quad. MAD-X modeling also confirms this. What this three-quad knob
does instead, is make a local dispersion bump (the quad effect on the dispersion is the same as the dipole
effect on the closed orbit), which is very useful in the horizontal plane.

3 Five Quad Bump

3.1 Motivation

We should be able to squash the non-local ∼17% error in the three-quad bump by using the other
correctors located in between (i.e. QL10 and QL12 to supplement QL9, QL10, QL11), so with a little
bit more algebra we can consider a five-quad bump instead of a three-quad bump.

For a five-quad bump, we have five quad kicks (k1, k2, k3, k4, k5), four phase advances(φ54, φ43, φ32, φ21),
four constraining equations (for a 2x2 matrix). That means it may be possible to find a solution in which
the phase-advances are unconstrained, the quad-kicks are all defined relative to those phase-advances
and an arbitrary k which represents the quad-bump magnitude.

3.2 Calculation

For a local five quad bump we require that:

M̃ = (I + k5E0)R54 (I + k4E0)R43 (I + k3E0)R32 (I + k2E0)R21 (I + k1E0)

��R51 =��R51 + k5E0R51 + k4R54E0R41 + k3R53E0R31

+ k2R52E0R21 + k1R51E0 +O(k2) (8)

where we have neglected the k2 and higher order terms (i.e. considering only small values of k).
From Eq. 8 we can write the four equations for the values of the 2x2 matrix:

0 = k4s54c41 + k3s53c31 + k2s52c21 + k1s51 (B.1)

0 = k4s54s41 + k3s53s31 + k2s52s21 (B.2)

0 = k5c51 + k4c54c41 + k3c53c31 + k2c52c21 + k1c51 (B.3)

0 = k5s51 + k4c54s41 + k3c53s31 + k2c52s21 (B.4)

This is a lot to keep track of, so let’s assume the phase-advances are symmetric

φ54 = φ21 = φA, φ43 = φ32 = φB (9)

and for algebraic convenience let’s also define the quad-kicks quasi-symmetrically:

k1 = κ1 − λ, k5 = κ1 + λ, k2 = κ2 − ε, k4 = κ2 + ε, k3 = κ3 (10)
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With these substitutions we rewrite:

0 = κ1s2A+2B + κ2(cAsA+2B + sAcA+2B) + κ3sA+BcA+B

− λs2A+2B − ε(cAsA+2B − sAcA+2B) (C.1)

0 = 2κ2sAsA+2B + κ3s
2
A+B (C.2)

0 = 2κ1c2A+2B + 2κ2cAcA+2B + κ3c
2
A+B (C.3)

0 = κ1s2A+2B + κ2(cAsA+2B + sAcA+2B) + κ3sA+BcA+B

+ λs2A+2B + ε(cAsA+2B − sAcA+2B) (C.4)

taking the sum and difference of Eq. C.1 and Eq. C.4 we obtain the equations:

0 = κ1s2A+2B + κ2(cAsA+2B + sAcA+2B) + κ3sA+BcA+B (C.5)

0 = λs2A+2B + ε(cAsA+2B − sAcA+2B) (C.6)

Using trig. identities we realize that s2A+2B = cAsA+2B + sAcA+2B = 2sA+BcA+B and consequently if
s2A+2B 6= 0 we find that Eq. C.5 implies that

0 = 2κ1 + 2κ2 + κ3. (D.1)

Using another trig. identity (cAsA+2B − sAcA+2B) = s2B with Eq. C.6 we find:

λ = −εs2B/s2A+2B (D.2)

Substituting Eq. D.1 into Eq. C.2 we find:

0 = 2κ2(sAsA+2B − s2A+B)− 2κ1s
2
A+B (C.7)

It can be shown by expanding for trig. functions that sAsA+2B − s2A+B = −s2B and consequently we can
write:

0 = κ1s
2
A+B + κ2s

2
B (D.3)

The last condition to resolve is Eq. C.3. Using the trig identity

c2A+2B − c2A+B = (c2A+B − s2A+B)− c2A+B = −s2A+B

and by expanding cAcA+2B − c2A+B = −s2B , we find that Eq. C.3 is the same as Eq. C.2 (under the
symmetric phase-advance constraint).

So now, summarizing the results and solving for λ, κ1, κ2 we have:

κ1 = −1

2
κ3(s2A+B/s

2
B − 1)−1 (D.1)

λ = −εs2B/s2A+2B (D.2)

κ2 =
1

2
κ3(s2B/s

2
A+B − 1)−1 (D.3)

We see that there is not constraint on the phase-advances (other than symmetry), they only determine
the ratios between the five thin kicks. But as before, κ3 sets the overall magnitude and ε is a degree of
freedom that changes the nature of the local beta-bump.

A local four quad bump, unconstrained by phase, is possible for:

ε = ±1

2
κ3
s2A+B

c2B

(
1 +

s2A+B

s2B

)−1
(11)

Another four quad bump, five quads missing the middle quad is possible for κ3 = 0, ε 6= 0.
Writing Eq. D.1-D.3 in terms of the original kicks:

k1 = −1

2
k3(s2A+B/s

2
B − 1)−1 + εs2B/s2A+2B

k5 = −1

2
k3(s2A+B/s

2
B − 1)−1 − εs2B/s2A+2B

k2 =
1

2
k3(s2B/s

2
A+B − 1)−1 − ε

k4 =
1

2
k3(s2B/s

2
A+B − 1)−1 + ε (12)
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3.3 Interpretation

Using four or five consecutive Boosters cells, we can create a quad bump truly local in both planes. The
five quad-long bump QL9 QL10 QL11 QL12 QL13 will primarily impact the local vertical beta functions,
but have a 1/3 impact on the horizontal beta function. If this is paired with a quad-short bump which
primarily impacts the horizontal plane, then independent control of the horizontal and vertical plane can
be achieved.

If the Booster tune is set to νx,y = 6.8, the appropriate quadrupole current coefficients can be
calculated for five adjacent cells:

k1 = −0.60 + 0.55ε, k2 = +0.10− ε, k3 = +1, k4 = +0.10 + ε, k5 = −0.60− 0.55ε

for any value of ε. If the tune is off by 0.1, it will only result in a nonlocal error of 1.5% so the same
coefficients can be kept when the tune is changed.

The appropriate coefficients for the four-bump (with adjacent cells) are given by:

k1 = −1.21, k2 = −1, k3 = +1, k4 = +1.21

(It turns out that the four-bump coefficients k1 and k2 are the same when φA = φB , which is to say that
the phase-advances are constant between cells).

It should be acknowledged that a local beta bump which uses four of twenty-four Booster cells may
be local in the sense that only impacts those four or five cells, but is a very wide bump.

To compensate for a missing corrector at L11, the QL9 QL10 QL11 QL12 QL13 five-quad-bump would
have to be used to avoid impacting either the notch absorber at L13 or the new PIP2-era collimator at
L8. To make a bump at L3 while avoiding use of the L3 corrector, a QL1 QL2 QL4 QL5 four-bump can
be used. To make a beta bump at L1 injection while avoiding L3 extraction, a QL23 QL24 QL1 QL2
four bump could be used or the five bump centered at L24.

To make a beta-bump that also serves as a local dispersion bump, a convolution of the two bumps
can be used:

k1 = +(−0.60 + 0.55ε)× 2.56
k2 = +(0.10− ε)× 2.56 +(−0.60 + 0.55ε)× 1.00
k3 = +(1.00)× 2.56 +(0.10− ε)× 1.00 +(−0.60 + 0.55ε)× 2.56
k4 = +(0.10− ε) ∗ 2.56 +(1.00)× 1.00 +(0.10− ε)× 2.56
k5 = +(−0.60 + 0.55ε)× 2.56 +(0.10− ε).00 +(1.00)× 2.56
k6 = +(−0.60 + 0.55ε)× 1.00 +(0.10− ε)× 2.56
k7 = +(−0.60 + 0.55ε)× 2.56
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