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Implementing maintenance automation with machine learning (ML) in a hazardous environment saves 
time and money, but also decreases human exposure to life threatening conditions. The goal is to develop a 
robotic system that semi-autonomously performs maintenance on radioactive parts of an accelerator 
beamline enclosure at Fermi National Accelerator Laboratory, specifically for the Neutrinos at the Main 
Injector (NuMI) Project. The first step in this project is the creation of an ML assisted device capable of 
detecting nuts and bolts on the beamline’s front window flange. Using an NVIDIA microcontroller and a 3D 
stereo camera, a deep learning (DL) model based on convolutional neural networks (CNN) is trained on a 
custom dataset of 3D images representing flanges captured by means of set camera paths from a rendered 
SolidWorks model. The final product will comprise a model based on SSD Inception V2, the Intel Realsense 
D435 depth camera, and a Jetson Nano microcontroller housing all necessary software and python scripts for 
object detection. From preliminary results for TensorBoard, the model trained using the dataset of 
SolidWorks images detects nuts and bolts with an average precision and recall of 74.5% and 61% 
respectively. This translated into the model detecting nuts and bolts on a 3D printed flange in real-time within 
a classification score of 80% to 90%. These results demonstrate that a model can be accurately trained using 
rendered CAD image training data and can be generalized to real world applications. By including depth 
analysis to the object detection script, the distance between the target and the camera is obtained and used to 
create a 3D coordinate system. The current work forms the basis for future development of ML and DL 
techniques for robotics applications. 
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CNN = Convolutional Neural Network 
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I. Introduction 
 The goal of the project is to use both computer vision and machine learning to identify and locate bolts on 
flanges which may be arbitrarily oriented in space in a hazardous environment. First, the principles of machine 
learning and the various applications and techniques for which it can be used, as well as, a review of various patents 
of similar scope are examined so as to avoid any infringements of copy right for the duration of this project. 
Following this information, a full methodology of the structure and implementation of the design and experimental 
procedure is performed and preliminary results are shown in this report.  

A. Problem Statement 
The sponsor of this project, Fermilab, wishes to implement both computer vision and machine learning to 

identify and locate nuts and bolts which may be arbitrarily located oriented in space. Due to the highly radioactive 
conditions that are found in the environment where the various projects at Fermilab are conducted, it is too 
dangerous to have humans perform any maintenance on the various instruments that are key to the continuity of said 
projects. Therefore, by having a robot take over to perform this maintenance, the project life cycle could potentially 
be extended and the likelihood of human exposure to radioactive materials would be decreased. The implementation 
of machine learning allows for the system to be adaptable to the environment in which is it placed, as allows for less 
immediate human supervision over the tasks to which it is being applied to. 

B. Sponsor Background 
Established in 1967, Fermilab is the United States’ leading particle physics laboratory, working with advanced 

particle accelerators to enhance the understanding of the world and universe. Fermilab aims to lead the world and 
nation in neutrino science, and development of particle colliders for further development of scientific knowledge. 
One of the many projects currently underway at Fermilab is the Neutrinos at the Main Injector Project, otherwise 
known as the NuMI Project. NuMI is a set of facilities that are being used to search for neutrino mass by looking for 
neutrino oscillation [1]. Currently, the lab is building a new particle beamline to direct a nearly pure beam of 
neutrinos from the Main Injector towards two detectors which will be able to count the neutrinos and all three 
subtypes of neutrinos and further determine the existence of the particles’ mass [1]. 
 The project described in this report is a step towards the objective of having a robotic system semi-autonomously 
perform maintenance or end-of-life procedures on various highly radioactive components from the newly 
constructed accelerator beamline enclosure for the NuMI Project. By creating a computer vision system with 
machine learning to locate fasteners, a robotic arm could then be programmed to move in proximity of and further 
remove the fasteners from the accelerator beam which would eliminate the possibility of human exposure to 
radiation.  

C. Literature Survey 
This section of the report is comprised of the analysis of the various concepts of machine learning that will be 

implemented for the duration of the project. Literature reviews of deep learning, image classification, object 
detection, image segmentation, transfer learning, and convolutional neural networks follow below. Following this, 
an analysis of various patents that may be along the scope of this project is conducted to determine how our project 
contributes to the greater body of creation and engineering.    
 In the paper “Deep Learning for Computer Vision: A Brief Review,” Voulodimos describes deep learning and 
the different schemes used for machine learning [2]. The concepts of deep learning and Convolutional Neural 
Networks are examined specifically in this report for the project. Deep learning is defined as a technique used in 
computer vision that aims to mimic the human brain’s neural network system. By creating computational models 
with multiple processing layers, this allows the machine to learn and represent data with levels of abstraction that 
imitate how the brain perceives information [2]. Deep learning can be applied for computer vision problems such as 
image classification, object detection and image segmentation which will be discussed later in this report.  
 The paper goes on to discuss the deep learning model, Convolutional Neural Networks (CNNs) which is shown 
to be very successful when applied to computer vision applications – it should be noted that all nomenclature, 
including CNN, is described on page 3 of this report. CNN is broken into three main neural layers. These layers are 
(1) convolutional layers, (2) pooling layers, (3) fully connected layers and each layer has a different role in the entire 
network and each layer is connected to the next [2]. In using a CNN model with an established architecture, it is 
subjected to pretraining which initializes the network with pretrained parameters so as to accelerate the learning 
process and enhance the overall capability of the network [2]. It is concluded that CNNs outperform traditional 



  
 

 

machine learning approaches in computer vision and recognition tasks while also being relatively easier to train. 
Because of this, the CNN model to deep learning will be used for the project at hand.  
 As stated by Voulodimos, “object detection is the process of detecting instances of semantic objects of a certain 
class in digital images and video,” [2]. To give a more colloquial depiction, object detection essentially takes an 
image, draws a box that bounds around the target object (or multiple instances of said object) [3]. Object detection 
can also work as an image classification system which takes the objects in the image and classifies then in the class 
to which they belong. For the purpose of the project, nuts and bolts are the class of objects that the model is being 
programmed to search for and the model is to classify the nuts and bolts separately on the flange. However, the 
limitation of object detection is that it will not send any information to the program about the shape of the object 
which is where image segmentation can be useful. 
 Image segmentation takes a given image and “draws a pixel-level mask on a specific object” and by doing so 
allows the model to receive more information about the size and shape of the object that is being detected via 
machine learning [3]. This can be useful for the project moving forward with potentially programming a robot arm 
to move to remove the nuts and bolts from the flange on which they lie. It is also found that by training a model that 
to simultaneously use image classification, object detection and image segmentation the model is able to do each 
task more successfully [3]. Therefore, for the machine learning project at hand, the model will be trained for all the 
tasks above.  
 Building a model from scratch can be incredibly time consuming and therefore unrealistic for the timeline of this 
project. Therefore, transfer learning will be implemented based on pre-trained models. These pre-trained models are 
models that have been trained to perform a similar task to the model that is desired and therefore can be modified to 
be used for the task at hand. According to Yosinski, Clune, Bengio and Lipson, transfer learning can actually build 
more accurate models while also saving time [4]. This is because it is computationally time consuming to train a 
model, therefore repurposing a pre-trained model is done. There are three methods by which one can repurpose the 
pre-trained model (1) train the whole model, (2) train some layers in the CNN and freeze the others or (3) freeze the 
convolutional base. Based on the type and size of the dataset being used, one of the three methods is chosen [4]. As 
the dataset for the project is built, one of the methods above will be chosen and implemented. 
 The first patent being reviewed is a robot implemented item manipulation [5]. It involves an inventory managing 
robot that analyzes a set of items for the target to be manipulated. It uses computer vision to identify the target, 
determines how to pick it up, and where it needs to be placed. The robot can determine if it cannot perform the task 
and requests human assistance. The patent does not specify what type of robot will perform the manipulation, or 
what type of camera will be used to determine the location of the target item [5]. The hybrid human/robot solution 
used here is relevant to the project at hand’s design as computer vision is to be used (specifically convolutional 
neural networks) to identify a target that needs to be manipulated by a robotic arm, then a human will take over to 
perform the manipulation. In the project’s case only one class of item is to be identified instead of multiple. 
 A process of the installation of nuts and collars onto fasteners has previously been created [6]. The process 
mainly highlights the use of these robots in the aerospace industry. The device uses a robot supporting a mounting 
base and carry a gimbal and rotary drive to make up a lightweight sensing robot with a fastening/torque tool [6]. The 
process is relatable to our project as a device is to be mounted on a robotic arm which will eventually be program to 
remove the nuts and bolts from a flange once the target objects have been identified. 
 Deep machine learning methods and an apparatus has been patented that will be related to object manipulation 
by the end effector of a robot. By applying the machine learning method with the training of a deep neural network, 
the system will be able to predict a measurement to be relayed to the robot arm which ends in the successful grasp of 
the targeted object [7]. This relates to our project as we will be training a neural network and having the information 
sent to a robotic arm to move towards the located nuts and bolts. 
 Another patent was published describing a semantic-labeled representation of 3D space taken from data from a 
video. The objects to be located in space are defined within a 3D coordinate system which relates to our project as 
our camera system will be set up with a common 3D coordinate system for space mapping of the environment that 
our device is to be placed in [8]. 

A machinery arm has been invented with a visual spatial attention method that is based on convolutional neural 
networks. This includes the collection of target object visual data, the training of the CNN model, and finally the 
verification of the model [9]. It relates to the project by means of using a CNN to train a model and have that 
information sent to a robotic arm for industrial use. 

D. Design Criteria 
This section outlines the necessary design criteria. These criteria are based on the sponsor’s needs and the overall 

goals for the project and are separated by the overall design requirements as well as the desired end product. The 



  
 

 

design requirements are the functional requirements and specifications of the device being created. These 
requirements are that the device must be able to accurately differentiate between bolts, nuts and various other 
features that may be present on the bolt circle. The device has to be able to determine the location and orientation of 
the previously identified fasteners with reference to a common coordinate origin. Finally, the device is required to be 
able to be scalable or otherwise applicable to different sizes of robot arms and varying sizes of nuts and bolts. 

The desired end product must be mountable on a robotic arm and must be capable of enclosing all the necessary 
hardware for the computer vision and machine learning tasks. The end product is also comprised of the software that 
will be able to identify and locate arbitrarily oriented nuts and bolts in 3D space. Finally, the end product will 
include the programming of a robotic arm to move in proximity of the location of nuts and bolts on a bolt circle. 

 

II. Technical Content 
In these subsections, the method followed to complete the project is presented. The subsections are broken down 

into the project assumptions, metrics and proposed solutions which all lead to the selected design of the project. 

E. Assumptions 
 Before moving to the design process and design of experiments of the projects, assumptions must be established 
so as to narrow the scope of the project. By setting limits to the extent to which the project is conducted, a higher 
success rate for the project is established for the given timeline. The following section describes the assumptions 
that are made in regard to machine learning for semi-autonomous maintenance in a hazardous environment. 
 The first assumption made is that the device will be first be comprised of a microcontroller in order to fulfill the 
design requirements of being mountable on a robotic arm and capable of enclosing all necessary software. It must 
have enough storage capacity to house all necessary libraries and packages that will be used to create a machine 
learning and computer vision system. The two microcontrollers that will be considered for the project are the Jetson 
Nano and Jetson TX2. Comparisons of these devices are found in the Proposed Design Solutions in this report.   

Another assumption for the project is that the camera to be used is a 3D stereo camera. This assumption is made 
due to the design requirement that the device must be able to determine the location and orientation of the previously 
identified fasteners to a common coordinate origin – which cannot be determined using a 2D camera. Furthermore, 
the underlying principle of deep learning and using CNNs is based on the human brain and human experience and 
the human experience is based on a three-dimensional reality [10]. Therefore, having a 3D stereo camera collecting 
data on the environment would reflect a more accurate image of the camera’s surroundings and allow for the 
creation of a virtual environment to base a coordinate system about which a robotic arm can be adjusted to move 
towards the nuts and bolts detected by the camera in 3D space [10]. It can be concluded that by using both CNNs 
and 3D stereo camera, the vision system would be able to create a more accurate model of reality which would then 
allow the entire system to be more accurate. Another assumption is to be taken that while programming the robotic 
arm, the camera must be set to lie within this range of distance from the targeted nuts and bolts on the bolt circle. 

Since the goal of the machine learning device is to perform maintenance and end-of-life procedures on highly 
radioactive components from an accelerator beamline enclosure, it can be assumed that the device attached to the 
robot arm will only be used once before being becoming obsolete and having to be thrown away with all other 
contaminated parts of the beamline and maintenance devices. Therefore, the device, software and hardware must be 
easily reproducible for future maintenance projects of similar scope. This can be done so by backing up the system 
to a separate hard drive that can be uploaded onto other Nvidia Jetson devices as the project uses various scripts and 
programs that are not unique to the device that will be presented in this project.  
 Finally, after conducting various literature and patent reviews from the Introduction section above in this report, 
transfer learning will be applied to the machine learning process for the first test at creating the machine learning 
system. Since many models have already been created and published for tasks of relatively similar scopes to this 
project, a model will be chosen based on accuracy and an optimized time for training the model, and transfer 
learning will be applied by means of creating a unique dataset of nuts and bolts and training the premade model to 
detect the objects presented in our project’s dataset. 

F. Metrics 
Since the scope of the project pertains to more involvement with creating programs and applying already 

established models and scripts to the unique task of locating nuts and bolts, the key metrics of the project are the 
percent accuracy of the object detection program, the time taken to detect the fastener to which the camera is 
pointing to, and the distance between the location of the camera to the located fasteners which is determined by the 



  
 

 

range by which the stereo camera can accurately detect an object in its field of view. The costs of the project solely 
pertain to the cost of the Jetson Nano, the Intel Realsense D435 depth camera, and the various accessories needed to 
use the microcontroller, and the cost of the robot arm which will be determined by our project advisor, Jon 
Komperda, as the 3D printed, prototype bolt circle was printed by the UIC on-campus facility, the Engineering 
Makerspace, and the 3D stereo camera and Jetson TX2 were provided to the team by Fermilab. Therefore, the price 
of the project is fixed to the prices of these devices. 

One of the most important metrics for the project is how accurately the system will be able to detect a nut or bolt 
on a bolt circle. The accuracy of the object detection prediction is directly linked to the success of the overall 
project. Therefore, optimizing the accuracy is a key metric for the project – the higher the accuracy, the higher 
likelihood of successful object detection. However, the more accurate the model, the more RAM is required to 
perform the training which can eventually lead to the Jetson Nano crashing. Therefore, this must be taken into 
consideration when choosing which model to use for training the machine learning process. This can be seen as the 
SSD Inception V2 Model has a range of accuracy falling between 85 and 95%, however, this model requires such a 
large amount of RAM that it may crash the GPU or CPU used for training. By using the SDD Lite Mobilenet V2 
model, the accuracy falls between 60 and 85% and the system is more likely to properly complete the training 
process. Both the SSD Inception V2 Model and the SSD Lite Mobilenet V2 model will therefore be tested for 
training on the Jetson Nano, a regular CPU laptop, and on UIC’s supercomputer, Dragon. This will test to see how 
long it may take to train each model using the various resources presented. Once the models have been trained, the 
accuracies are visualized in TensorFlow’s TensorBoard. This is done by comparing the bounding boxes around the 
targets set at “ground truth” compared to the boxes around the object detected by the newly trained model. Finally, 
the loss function, precision and recall will be compared between the two models to determine which would be better 
used for the project. 

The time taken to detect the fastener to which the camera is pointing to is very much dependent on the model 
being used for transfer learning with the dataset pertaining to the project. However, using TensorFlow allows for 
access to optimizer options, or tf.OptimizerOptions, which can be applied to the results presented in the Tensor 
Graph once training has already been attempted and optimized certain TensorFlow operations to save time. By 
testing both custom models with the camera, it can be determined which model is superior based on the time it takes 
to accurately detect the target objects. 

Finally, the distance between the location of the camera to the located fasteners, which is determined by the 
range by which the stereo camera can accurately detect an object in its field of view, is measured and is to be taken 
into account when determining the accuracy of the coordinate detection of the computer vision and machine learning 
system. This can then be used to program a robotic arm to move in proximity to the nuts and bolts on the bolt circle. 
The camera acquired from Fermilab, the TaraXL stereo camera, has a detection range from 50 cm to 300 cm from 
the lens of the camera, compared to the Intel Realsense D435 which has a detection range of 10.5 cm to 1000 cm. 
Therefore, when establishing a coordinate system using the point cloud software for space mapping from either 3D 
stereo camera, these ranges must be taken into account. This will also depend on the distance between the end of the 
arm that will point to the located fastener and the location of the camera lens on the device attached to the robotic 
arm. 

G. Proposed Solutions and Selected Design 
After reviewing the literature, existing patents and taking the above into consideration, it can be determined that 

though many different machine learning applications exist in the realm of image classification, object detection and 
image segmentation, nothing has yet to be applied to the specific task and environment for this project. From this, a 
decision matrix, Table 1, was created for choosing between the Jetson Nano and the Jetson TX2 as the 
microcontroller for the project. The memory capacity as well as compatibility with the two provided 3D stereo 
cameras were given the highest scores of 5 as these are key for moving forward with the project. The storage 
capacity was given a score of 3 as memory is more vital to the project compared to storage. The cost was given a 
low score of 2 as both devices were provided either by UIC or by and Fermilab. The size was given a score of 4 as 
Fermilab wants the device to be able to be connected to a robotic arm. 
 



  
 

 

Table 1. Decision Matrix for Microcontroller  
Weight 4 2 3 5 5 19 

Percentage 21% 11% 16% 26% 26% 100% 
Option Size Cost Storage Memory Compatibility Score 

Jetson 
Nano 

Handheld size 
but would be 
difficult to 

attach to a robot 
arm 

Cheap ($99) 128GB 
micro-SD 

4GB 
LPDDR4, 
25.6 GB/s 

Not 
compatible 

with Tara3D 
stereo camera. 

Compatible 
with Intel 
Realsense 

D435 camera 

Provided 
by UIC  

50 80 70 35 85 62 

Jetson TX2 

Larger and 
would not be 

able to attach to 
a robot arm 

About four 
times as 

expensive as the 
Nano, but 

provided by 
Fermilab ($399) 

32 GB 
eMMC 5.1 

8GB 128-
bit 

LPDDR4, 
58.3 GB/s 

Compatible 
with Tara3D 
stereo camera 

Provided 
by 

Fermilab 

30 20 50 70 90 58 

Notes: High = smaller 
size High = low cost High = more 

storage 

High = 
more 

memory 

High = better 
compatibility   

 
 Next a decision matrix, Table 2, was made to compare the different types of cameras that may be used for the 
object detection. The resolution was given the highest score of 5 as this is most important when having the system 
detect the target objects. The cost was given a score of 2 as the cameras were all provided by either Fermilab or fell 
within the budget for UIC for the project. Compatibility was given a score of 3 because the camera chosen must be 
compatible with the Jetson interface, however, most cameras are compatible, so this was not a problem to overcome. 
The size was also given a score of 3 as the camera will be attached to a robot arm and must be able to move with the 
robot arm without inhibiting the motion.  

 
Table 2. Decision Matrix for Camera  

 
Weight 5 2 3 3 13 

Percentage 38% 16% 23% 23% 100% 
Option Resolution Cost Compatibility Size Score 

TaraXL 
stereo 
camera 

1512 x 480 $349  Compatible with 
TX2 

Fits on top of 
Nano (100 mm x 
30 mm x 35 mm) 

Provided by 
Fermilab 

75 20 80 75 67 

Raspberry Pi 
Terrible 

resolution Cheap 

Easy to set up and 
compatible with 

all Jetson 
platforms 

Very small and 
fits in slot on 

Nano box 

Disqualified for 
bad resolution 

5 70 80 80 50 

Intel 
RealSense 

D435  

1280 x 720 $179  Compatible with 
TX2 and Nano 

Fits on Nano (90 
mm x 25 mm x 

25 mm) 
Provided by UIC 

80 60 80 76 76 

Notes: High = better 
resolution 

High = low 
cost 

High = more 
storage 

High = more 
memory   

 



  
 

 

 Next a decision matrix, Table 3, was made to compare the different types of model architectures that may be 
used for training the custom machine learning model using transfer learning. The average recall and precision were 
given the highest scores of 10 each as these are equally important when having the system correctly detect and 
differentiate between the target objects. The speed of detected the objects was given a score of 5 as this was subject 
to if a human eye may notice a notable difference.  
 

Table 3. Decision Matrix for Model Architecture 
 

Weight 5 10 10 25 
Percentage 20% 40% 40% 100% 

Option Speed (ms) Average Recall Average Precision Score 

Faster RCNN 
89 0.573 0.7002   

30 57 70 57 

SSD Lite 
Mobilenet 

31 0.673 0.8288   
 

75 67 83 75  

SSD Inception 
V2 

42 0.687 0.847   
 

 
70 69 85 76  

Notes: High = faster speed High = better recall High = better precision    

 
Therefore, taking the above assumptions and decision matrices scores into consideration, this leads to the 

following proposed design of the system for our project. The SSD Inception V2 model architecture will be used to 
train the custom model, while the Nvidia Jetson Nano will be used as the microcontroller for running the pretrained 
object detection and classification script via the Intel Realsense D435 depth camera. However, as the Jetson Nano 
does not have the RAM compacity to perform the training of the model, a local directory on the supercomputer, 
Dragon, will be set up to be used to train our model using transfer learning. A custom object and coordinate 
detection script will be created for detecting nuts and bolts on a flange and displaying the 3D coordinate location of 
each target object. 

III. Methodology 
This section describes the design process, design of experiments, and methods chosen in order to optimize the 

results. It is broken down into three sections: Experimental Method, Technical Drawings and a House of Quality.   

H. Experimental Method  
This section describes the experimental methods used for each subsection of the project. This includes the 

experimental method for the machine learning process, the depth camera set up and finally applying the resulting 
machine learning model to the camera depth tracking and object detection system. 

1. Machine Learning Model 
In order to begin working with the Jetson Nano, the Jetson Nano Developer Kit SD Card Image has to be 

downloaded from the Nvidia website and flashed onto a micro-SD card. For the project, an SD card with 128 GB of 
storage capacity was chosen. A keyboard and mouse are connected to the Nano via USB slots and a monitor is 
connected by an HDMI cable. For testing purposes, a Raspberry Pi camera is connected to the Jetson Nano which 
will later be replaced by the Intel Realsense D435 depth camera. 

Once the Jetson Nano is booted, it can be configured for machine learning applications. This is done by 
installing system package prerequisites, installing Keras and TensorFlow and installing the Jetson Inference engine. 
Once Python has been installed, the Python package manager, the Python environment can be configured by setting 
up virtual environments which help having to maintain separate micro-SD cards for each development environment 
that may be used on the Nano. Once on the create virtual environment, TensorFlow and Keras can be installing 
within the environment, and Jetson Inference can be compiled for installation in the same environment. Jetson 



  
 

 

Inference contains sample vision systems that can be used for object detection, image classification and image 
segmentation. A library of programming functions for computer vision, OpenCV, is also installed in the virtual 
environment. 

At this point in the experimental process, the Nvidia Jetson Nano, imagenet-camera sample was tested for image 
classification using the Raspberry Pi camera as the input camera. The imagenet-camera binary is executed with the 
Residual Neural Network model, or ResNet, as the image classification model. By point the camera at various 
objects, the system was able to identify and displaying the accuracies of each classification of the objects that it was 
targeting. However, the accuracies ranged from 10 to around 60% and would even vary with any shift in the camera 
focus or movement of the object of camera. For the project, the accuracies should fall within a smaller range and the 
object detection system will be programmed for the sole purpose of identifying fasteners rather than a variety of 
objects as is found using the given demos from the Jetson Nano. 

The first attempt at solving the problem posed by Fermilab will begin with a custom object detection system 
created using TensorFlow and OpenCV and applying transfer learning to an existing highly complex model. The 
first model chosen for this project was the SSD Lite Mobilenet V2 since it was created to run on mobile devices and 
requires less RAM than other complex models. 

To begin building the custom object detection, a custom dataset of images of various nuts and bolts was created. 
The nuts and bolts in the dataset requested by Fermilab were socket head cap screws, hex head cap screws, taper 
screw head cap, and hex nuts. However, both hex nuts and bolts will be in the dataset so as to not confused the 
model for initial testing. An initial dataset of 400 images of these fasteners was created by first taking pictures of the 
fasteners, and then expanded by using google images of these nuts and bolts. A detailed description of the creation 
of this dataset is found in the Dataset Creation section of this report. Using LabelImg, an image labeling software for 
machine learning, each fastener in the images was labeled by drawing a box around the target object and given the 
general labels ‘nut’ and ‘bolt.’ From the labeling, a .xml file was created for each image containing all information 
that is to be read by TensorFlow. The image files with their corresponding .xml files are then split into two folders, 
‘test’ and ‘train’ containing 20% and 80% of the files respectively. In order for TensorFlow to be able to process 
these files, the .xml files had to be converted into TFRecord files which contain the required information to train the 
neural network and act as TensorFlow’s binary storage format. To convert the files, a Python script is run and points 
to the paths of the dataset with the images and their corresponding .xml files and outputs .record files. 

Next, the SSD Lite Mobilenet V2 model configuration file is downloaded onto the Nano. A label map text file is 
created containing the label names created while labeling the images and a specified number ID for each label 
created. The model configuration file is then modified to meet the correct number of number classes for the labeling 
IDs, correct paths for TFRecord files, model training batch size, number of training steps and loss functions defined. 
Next, the protobuf files responsible for TF Object Detection model configuration and training parameters were 
compiled. From this point, the neural network can be trained for the custom dataset of the nuts and bolts and will 
take approximately 20 hours for completion. TensorBoard, a visualization tool for machine learning 
experimentation, is used to tracking loss and accuracy during training. However, due to the minimal amount of 
RAM available on the Jetson Nano, training could not be completed, and the Nano would crash with each attempt at 
training. Similarly, attempting to train the model on a laptop would have taken around 200 days for completion 
which is not viable for the project. 

To solve the problems of lack of RAM and computing power, Dragon, UIC’s supercomputer cluster, which is a 
CPU and uses Intel Xeon processors, was used to not only complete the training process of the model, but also to 
speed it up. After creating a local directory for the project on Dragon, all of the software and libraries needed for 
training that had been installed on the Jetson Nano were installed into this directory. Then in order to execute the 
training, a submission script is run so as to execute the job on a compute node. At this point, the model was set to 
train for an initial setting of 72 hours, the maximum allotted time for any given job, so as to set a benchmark for how 
long training may take. Cyberduck, a SFTP software, was then used to transfer the model training data from the 
supercomputer to a personal laptop. TensorBoard was then launched to observe the results from training the model. 
TensorBoard displays the results for the loss function as well as the overall accuracy of the model that was trained. It 
also displays examples of the images from the testing dataset where is compares the ground truth images to the same 
image with the detection results. The ground truth image is the image with the set bounding box from LabelImg, 
while the detection image is the result of the machine learning system attempting to apply a bounding box to the 
target object. By measuring the differences between ground truth and the detection, the accuracy of the system can 
be determined.  

After observing the initial results, the training dataset was changed from images of singular nuts and bolts, to a 
dataset of images of various hex nuts and bolts in flanges found both in the city environment as well as found on 
google images. Following this, another dataset was created from images taken in SolidWorks of model of flanges 



  
 

 

found on McMaster Carr filled with hex nuts and bolts. By training the model on these various datasets, the accuracy 
and loss functions can be compared so as to determine which data produces the most accurate results from the model 
training.  

Finally, after observing the results of the model’s training on TensorBoard and in real time, the model was 
trained using the SSD Inception V2 configuration file. The same steps for training the model with the SSD Lite 
Mobilenet were performed for training with the SSD Inception V2 model architecture. The results for both model 
architectures were then compared in terms of speed and accuracy in order to determine which model architecture 
should be used for training our model for the duration of the project. 

2. Creation of Dataset 
 After observing the results of many different training sessions on the supercomputer, it has become clear that the 
accuracy and precision of the model are incredibly dependent on the images that comprise the inputted dataset. The 
first dataset was made up of 231 images taken from an iPhone of a variety of single nuts and single bolts in each 
image. An example of an image from the dataset is shown below in Figure 1. 
 

 
Figure 1. Example of image of a hex nut labeled for the first dataset. 

  
Due to the resizing of the image for use in TensorFlow, it can be seen that the hex nut in Figure 1 is flattened and 

not ideal for machine learning. Since the machine learning and computer vision system will ultimately be applied to 
the window flange of the NuMI target and since the dataset was deemed unsatisfactory, it was concluded that a new 
dataset was to be created using the prototype flange.  
 The second dataset was made of around 800 images also taken from an iPhone of the 3D printed flange shown in 
Figure 1 in the Technical Drawings section of the report. This flange, like the window flange of the NuMI target, is 
made up of 32 nuts and 42 bolts. The pictures taken showed varied light and background settings and generally 
displayed the entire flange at varying distances from the camera, an example is shown in Figure 2 below. 
 

 
Figure 2. Example of image of the back of the 3D printed flange. 

 
 The iPhone camera was set to take square images so that when resizing the images occurred, they would not be 
distorted. However, after observing the results of the model training on TensorBoard, it was concluded that the 
images contained too many nuts and bolts for the system to accurately detect any of the target objects. Also, as seen 
in Figure 2, the lighting conditions were not permissible to properly identifying the nuts and bolts, and the images 
were captured at too great of a distance from the flange. 



  
 

 

 Taking into account the results from the first two datasets, a third dataset was created by taking 1200 images of 
nuts and bolts on various flanges found around the city of Chicago with the hopes that the varying backgrounds may 
improve training accuracy. These flanges had a more limited number of nuts and bolts attached to them – ranging 
between two and four of one of the types of fasteners. Due to the vast majority of the flanges being outside, the 
lighting was significantly better than overhead lighting. However, after reviewing the training results in 
TensorBoard, it was concluded that the presence background noise and the appearance of partial nuts and bolts, seen 
in Figure 3, confused the model and resulted in poor accuracy and precision. 
 

 
Figure 3. Example of image of the flange from third dataset. 

 
 After consulting with Dr. Yurkiv, the next dataset was to be created from the rendering of the SolidWorks 
assembly file of flanges found at McMaster Carr limited to four nuts and bolts per flange. A dataset of 1400 labeled 
images was created from four different flanges, an example is presented below in Figure 4. This led to the greatest 
accuracy and precision results of the datasets thus far. However, because the model was only trained to identify nuts 
and bolts with a blank background, this led to false detections of target objects when an image in the testing folder 
happened to have different features in the background, as shown in Figure 5. 
 

 
Figure 4.  Example of images of the flange from SolidWorks dataset with no background (left) and applied 
background for increased accuracy (right). 
 
 



  
 

 

 
Figure 5. Ground truth (right) is compared to detections (left) where the model confuses the grass for a nut 
with a classification score of 72%. 

 
 Though grass will not be found in Fermilab, more images of the rendered SolidWorks assembly were taken with 
varying backgrounds found in SolidWorks. The final dataset was therefore made up of 2361 CAD images from 
SolidWorks with 1405 of the images without backgrounds and 956 images with varied background as shown below 
in Figure 6. The results from training the model based on the newest dataset led to the best accuracy and precision 
results of all the datasets. 
 

 
Figure 6. Example image from final dataset using a background with varying features. 

 
  By using SolidWorks to render a model of a flange, a camera path can be set to save images along the 
pathway. This not only saves time from not taking individual images manually, but also allows for an infinite 
number of pathways to be set so as to acquire a full range of angles of the flange to be captured for training the 
model. Ultimately, this will automate the data collection process for the backend of model training, especially as the 
accuracy and precision of the model increased with the use of this type of dataset. 
 The training results from all the different datasets and model configurations is found in the Results section of the 
report.  

3. Intel Realsense D435  
While the models were being trained, the Intel Realsense D435 depth camera SDK was installed on the Jetson 

Nano in the same python environment as the previously installed libraries such as TensorFlow and Keras. This was 
done by installing a Swapfile from the JetsonHacks Github to ease an out of memory issue on the Nano. Next Intel’s 
librealsense was installed on the Jetson Nano. However, in order to allow for the use of the DNN camera function 
for the Intel Realsense camera, -DBUILD_CV_EXAMPLES=true must be added to the cmake command which can 
be found in the build shell file. Once this was added to the build .sh file, librealsense was then built on the Jetson 
Nano. It should be noted that OpenCV is a prerequisite for using the software. 



  
 

 

Once the Intel Realsense SDK was successfully installed on the Jetson Nano, various sample codes were made 
available for use. The specific code that is to be used and potentially modified for the project is the rs-dnn code. This 
particular sample code uses the Intel Realsense camera with existing DNN algorithms. It was derived from an 
example that is provided with OpenCV and was modified to function with the Intel Realsense camera as well as take 
advantage of the depth data. The demo originally loaded an existing Caffe model that will be replaced with the 
custom models created for detecting nuts and bolts. When running the Intel Realsense rs-dnn demo with the Caffe 
model on the Nano, bounding boxes appear around target objects in the environment that label both the object being 
targeted as well as the depth of the object to internal origin in the camera lens.  

However, it was found that a custom model could not be imported into this rs-dnn demo due to compatibility 
issues, therefore, a custom object and coordinate detection script was created to not only detect and differentiate 
between target object, but also display the 3D coordinates of the targets.  

4. Custom Object and Coordinate Detection Script 
Once the custom object detection model finished training and saved, a frozen inference graph protobuf file 

(frozen_inference_graph.pb) is exported using the saved checkpoint files. This must be saved in a folder in 
TensorFlow’s object detection directory on the Jetson Nano which also contains the label map text file created for 
training the model. The path to the working directory is in user/tensorflow/models/research/object_detection. 

The script is created by importing the necessary packages and utilities, such as TensorFlow to utilize the model 
and the Intel Realsense SDK. Next a path is set to the directory containing the saved frozen inference graph and 
label map. The input and output data for the object and coordinate detection classifiers are defined as the images for 
the input, and the detection boxes, classification scores, classes, and XYZ coordinates for the outputs. The Intel 
Realsense D435 camera is then initialized. A flow chart of the full algorithm is shown below in Figure 7.  
 



  
 

 

 
Figure 7. Flow Chart of Object and Coordinate Detection Algorithm 

 
 This object and coordinate detection script must be saved in the same working directory as the frozen inference 
graph. The camera is then placed in front of an image of a flange filled with nuts and bolts and the object and 
coordinate detection script is run in the terminal of the Jetson Nano. The command must be run while in the 
directory containing all necessary packages. This will take a minute to load and for the program to begin running.  
 Once the program is running a window named “Fermi Detection” will appear with the results of the object and 
coordinate detection. Detection boxes with the objects’ names and classification scores will be drawn around the 
nuts and/or bolts present in the video feed, and the XYZ coordinate location of each object will be displayed above 
each detection box. By using a physical ruler, the accuracy of the locations of each object can be determined. The 
origin of the coordinate system is taken from the Intel Realsense D435 camera lens. 
 

I. Technical Drawings 
This technical drawing pertains to the creation of the 3D printed, prototype flange, or bolt circle, that will be 

used to test the object detection system and eventually test the robotic arm. This flange was based off of the window 



  
 

 

flange of the NuMI target assembly. Fermilab provided detailed drawings of the downstream view, Figure 13, and 
the window flange, Figure 14, of the NuMI target. These drawings can be found in the Appendix of this report.  
 Figure 8 below depicts the CAD model of the 3D printed flange used as a prototype for the project. As the focus 
of the machine learning system is on the placement of the nuts and bolts on the bolt circle, these holes were made in 
the flange and all surface finishing and divots will be done post 3D printing by means of cutting and wrapping with 
tin foil to emulate the lighting conditions and glare that would reflect off a flange made of metal. Nuts and bolts will 
be fastened to the 3D printed bolt circle and the object detection system will be tested for the detection of these 
fasteners. A detailed drawing of the model, Figure 15, is found in the Appendix. 

 

 
Figure 8. Rendered CAD model of 3D printed, prototype flange with nuts on the back of the flange (right) 
and bolts on the front of the flange (left) inserted into holes. 

J. House of Quality 
The following house of quality in Table 4 was generated in order to determine the correlations between the 

demand qualities and quality characteristics that Fermilab provided for the project. Each demand quality was given a 
weight of importance with 5 being the highest and 1 being the lowest, and the relationships between the demand 
qualities and quality characteristics were ranked by strength on a scale of 1 being the weakest and 9 being the 
strongest. 

 



  
 

 

Table 4. House of Quality 

 

IV. Results 
 These results in Table 5 are results from varying the conditions set for training the TensorFlow model using 
transfer learning. The training was set to a time of 24 hours with 20,000 steps for the completion of training. The 
image processing parameters that were taken into account or altered were the batch size, the number of labeled 
images of nuts and bolts, and how these images were gathered. The training parameters were adjusted by setting the 
dropout use to “true” with a keep probability of 0.8, setting initial learning late from 0.004 to 0.001, set 12 
regularizer from 3.9E-5 to 9.9E-5, and reducing the image size further from 300 by 300 to 256 by 256. These 
changes were all done by guidance from Steven Penny, the teaching assistant for senior design who’s research us in 
machine learning. The final step average loss, the average loss and average recall were measured and compared. 
 



  
 

 

Table 5. Results from Training TensorFlow Model with 24-hour time limit and 20,000 steps 

 Approach 
 

Model Batch 
Size 

Number of 
Labeled 
Images 

Final step 
Average 

Loss 

Average 
Precision 

Average 
Recall 

Im
ag

e 
Pr

oc
es

sin
g 

First try SSD Lite 
Mobilnet 24 231 11 0.06 0.05 

Clean first try 
images 

SSD Lite 
Mobilnet 24 200 12 0.024 0.023 

Use more images SSD Lite 
Mobilnet 24 860 11 0.1 0.1 

Add random object 
images 

SSD Lite 
Mobilnet 24 1230 11 0.09 0.08 

CAD images + 
random objects 

SSD Lite 
Mobilnet 24 1048 3.2 0.745 0.61 

 
CAD images + 

random objects with 
varied backgrounds 

SSD 
Inception 

V2 
24 2361 2.416 0.857 0.699 

A
dj

us
t t

ra
in

in
g 

pa
ra

m
et

er
s 

Set dropout use to 
true with dropout 

keep probability 0.8 

 
SSD Lite 
Mobilnet 

24 231 11 0.045 0.022 

Set initial learning 
rate from 0.004 to 

0.001 

SSD Lite 
Mobilnet 24 231 11 0 0 

Set l2 regularizer 
from 3.9E-5 to 

9.9E-5 

SSD Lite 
Mobilnet 24 231 11 0.007 0.005 

Reduce image size 
form 300x300 to 

256x256 

SSD Lite 
Mobilnet 24 231 11 0.024 0.018 

Increase batch size 
SSD Lite 
Mobilnet 32 231 11 0 0 

 
 The results from the first attempt at training the model on a dataset are highlighted in yellow with an average 
precision and recall of 6% and 5% respectively. These results fell far short of the minimum goal threshold of 60%. 
Therefore, the previously described changes to the training were done along with changes to the datasets, which lead 
to the training process to be performed for the rest of the project life cycle. By using the SSD Inception V2 model 
and a dataset made up of CAD rendered images with varied background and random objects labeled to be tested by 
the model, the results show an average precision and recall of 85.7% and 70% respectively. This is highlighted in 
the table above in green. 
 In observing the results from the last training process on TensorBoard, it was seen that when detecting the nuts 
and bolts in the SolidWorks images the classification probabilities were around 80% to 90%, shown in Figure 9. 
Along with this, when comparing the ground truth from a soccer ball with a white background to the detections, the 
model does not draw any detection boxes in the image, shown in Figure 10. 
 
 



  
 

 

 
Figure 9.  Ground truth (right) is compared to detections (left) from a SolidWorks image of a flange with nuts 
where classification probabilities ranges from 79% to 99%. 
 

 
Figure 10. Ground truth (right) is compared to detections (left) where the model assesses that there are no 
nuts or bolts in the image. 
 
 After retraining the model with SolidWorks images with varied backgrounds, the model was able to ignore the 
background features and accurately detect the target objects as shown in Figure 11. 
 

 
Figure 11. Ground truth (right) is compared to detections (left) from SolidWorks image of a flange with bolts 
where classification probabilities are all 99%. 
 
 Next, the custom model was loaded into the custom object and coordinate detection script on the Jetson Nano 
which then initialized the camera. The camera was placed in front of an image of a flange filled with nuts and bolts 
for testing. The results are shown below in Figure 12.  



  
 

 

 
Figure 12. Output of image of flange with detection boxes labeling the detected nuts and 3D coordinates of 
each nut with the camera lens as the origin. 
 
 With a frame rate of 3.29, the custom model was able to detect the target nuts with classification scores ranging 
between 84% and 99% which falls far above the minimum target score of 60% desired for the project. After 
physically measuring the distances between the image of the nuts and the camera lens, it was deduced that the 
machine learning and computer vision system was able to accurately detect and display the 3D coordinates of each 
of the target objects. 
 It was also found that the model was able to detect the nuts and bolts on the 3D printed prototype flange with the 
same classification probabilities, however, due to unforeseen circumstances, the 3D printed flange was no longer 
accessible, and images of flanges had to be used for testing the machine learning and computer vision system. 

V. Conclusions and Future Work 
The above decision-making processes narrowed the scope of the project and allowed for final design of the 

machine learning and camera system. It was concluded that the supercomputer, Dragon, will be used to apply 
transfer learning to train the model, while the Jetson Nano will be used to run the machine learning and computer 
vision system conjointly with the Intel Realsense D435 depth camera using a custom object and coordinate detection 
script. The SSD Inception V2 model will be used for transfer learning with the custom dataset of images of nuts and 
bolts that was built using images taken within the SolidWorks assembly files of various flanges with nuts and bolts, 
and varied backgrounds. Finally, it can be concluded that by training a model based on a dataset of CAD images, the 
machine learning and computer vision system was able to detect nuts and bolts on flanges, as well as, display the 3D 
coordinates of each object with the camera lens as the origin. This will not only reduce costs but reduce training time 
and potentially automate other processes that currently risk exposure to radiation. 

This is only the first step towards the objective of having a robotic system semi-autonomously perform 
maintenance or end-of-life procedures on various highly radioactive components for the NuMI Project at Fermilab. 
By creating a computer vision system with machine learning to locate fasteners, a robotic arm could then be 
programmed to remove the fasteners from the accelerator beam. Therefore, moving forward, a robotic arm may be 
acquired and programmed based on the given number degrees of freedom of the robotic arm and the detected XYZ 
coordinates of the target objects. After researching various six degree of freedom robotic arms, the Niryo One 
robotic arm was chosen to be the ideal robotic arm for use. This was determined as the University of Salerno 
successful used this particular robotic arm with the Intel Realsense D435 depth camera and the Jetson Nano [11]. As 
compatibility between systems is key for the project, this is an ideal scenario moving forward. This robotic arm has 
been 3D printed, is a six-axis system, and is open source. It can be programmed using a desktop application, an 
Arduino or Robot Operating System (ROS) which can be installed on the Jetson Nano. This ROS wrapper can be 
installed and used with the Intel Realsense D435 camera, therefore making this an ideal robotic arm to use. 
 

Appendix 
Figures 13 and 14 below show the detailed drawings of the both the downstream view and the window flange of 

the target. These drawings were used to create the prototype flange that was 3D printed for testing of the machine 
learning and computer vision system of which its drawing is shown below in Figure 15.  



  
 

 

 
Figure 13. Excerpt from NuMI target assembly drawing. 

 

 
Figure 14. Detailed drawing of window flange from NuMI target. 



  
 

 

 

 
Figure 15. Detailed drawing of prototype flange for 3D printing. 
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