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Results from February 2018Results from February 2018Outline

● Intensity-dependent effects in ATF2
- Simulations
    * Impact of static imperfections.
    * Impact of dynamic imperfections.   
    * Impact of corrections (One-to-one, DFS, WFS)

- Measurements
     * Impact of corrections (DFS, WFS, wakefield knobs).
     * Comparison between simulations and measurements.

● Impact of short-range and long-range wakefields in 
the 380 GeV CLIC BDS.

● Impact of short-range and long-range wakefields in 
500 GeV ILC BDS.

● Conclusions
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The Accelerator Test Facility 
(ATF2)
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Results from February 2018Results from February 2018ATF2 layout, Twiss and parameters

ATF2 is a test facility to study the feasibility of the Final Focus System [1] that is envisaged in the future linear 
colliders CLIC and ILC. The primary project goal is to establish the hardware and beam handling technologies 
pertaining to transverse focussing of the electron beams to 37 nm. All the parameters can be found in the ATF2 
design proposal report [2].

https://journals.aps.org/prl/pdf/10.1103/PhysRevLett.86.3779
https://ilc.kek.jp/ATF2/proposal/ATF2proposal1.pdf
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Results from February 2018Results from February 2018
Bunch length measurement

Previous measurements

All small beam sizes were obtained with a beam intensity of [0.5-1.5]x109 e-/bunch 
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Intensity-dependent effects in 
ATF2

Simulations

Wakefield introduction
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Results from February 2018Results from February 2018
Introduction

Transverse and longitudinal wakefields



18th June 2020 APT seminar 8

Intensity-dependent effects in 
ATF2

Simulations

Impact of corrections
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Results from February 2018Results from February 2018
CLIC orbit correction (1/3)

One-to-one correction

The One-to-one correction consists of minimizing the transverse position of the 
beam, with respect to the beam pipe centre measured at BPMs, using steering 
magnets [3].

http://link.springer.com/10.1007/978-3-662-08581-3_13
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Results from February 2018Results from February 2018
CLIC orbit correction (2/3)

Dispersion Free Steering (DFS) correction

[4].

https://linkinghub.elsevier.com/retrieve/pii/016890029190403D
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Results from February 2018Results from February 2018
CLIC orbit correction (3/3)

Wakefield Free Steering (WFS) correction

[5].

https://linkinghub.elsevier.com/retrieve/pii/0168900291903027
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Results from February 2018Results from February 2018Sextupole knobs

● First order knobs correction by changing the position of final focus sextupoles.

● Second order knobs correction by changing the strength of the final focus sextupoles.

Knobs (Y, YP D XP XP.*XP XP.*YP XP.*D)

First order Second order

Figure: Positions of the sextupole knobs in the Accelerator Test Facility 2 (ATF2) [6].

https://journals.aps.org/prab/pdf/10.1103/PhysRevSTAB.17.023501
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Results from February 2018Results from February 2018
Impact of corrections in ATF2

Simulation conditions (1/2)

Simulated errors:

● Static errors:

- Misalignement of quadrupoles, sextupoles, 
BPMs of 100 um RMS.

- Strength error of quadrupoles, sextupoles 
of 0.01% RMS.

- Roll error for quadrupoles and sextupoles 
of 200 urad RMS.

Corrections applied:

● One-to-one

● DFS

● WFS

● Knobs (Y, YP D XP XP.*XP XP.*YP XP.*D)

First order Second order

Simulation procedure:

● 100 machines with the previously cited static imperfections.

● Apply the cited corrections and the knobs on the distribution at the IP.

● Measure the vertical beam size at the IP.
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Results from February 2018Results from February 2018
Impact of corrections in ATF2

Simulation conditions (2/2)

● Wakefield sources: Cavity BPMs, bellows and flanges (wakepotentials calcultated with GdfidL ).[7][8][9]

Position of 
wakefield sources

Wakefield sources wakepotentials (V/pC/mm)

Cavity BPM Bellows Flange

http://www.gdfidl.de/
https://ieeexplore.ieee.org/document/751304
https://journals.aps.org/prab/pdf/10.1103/PhysRevAccelBeams.19.091002
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Results from February 2018Results from February 2018Impact of orbit corrections in ATF2
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Intensity-dependent effects in 
ATF2

Simulations

Impact of static errors
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Results from February 2018Results from February 2018
Impact of static errors in ATF2:

Simulation conditions

Simulated errors:

● Static errors:

- Misalignement of quadrupoles, sextupoles, 
BPMs of 100 um RMS.

- Strength error of quadrupoles, sextupoles 
of 0.01% RMS.

- Roll error for quadrupoles and sextupoles 
of 200 urad RMS.

Corrections applied:

● One-to-one

● DFS

● WFS

● Knobs (Y, YP D XP XP.*XP XP.*YP XP.*D)

First order Second order

Simulation procedure:

● 100 machines with the previously cited static imperfections.

● Apply the cited corrections and the knobs on the distribution at the IP.

● Each simulation set will study the impact of a specific static error.

Tracking code used: PLACET

https://accelconf.web.cern.ch/e08/papers/tupp094.pdf
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Results from February 2018Results from February 2018
Impact of static errors in ATF2:

Misalignment

Misalignement of quadrupoles, sextupoles, BPMs of 100 um RMS:
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Results from February 2018Results from February 2018
Impact of static errors in ATF2:

Strength error

Strength error of quadrupoles, sextupoles of 0.01% (+ misalignment 100 um):
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Results from February 2018Results from February 2018
Impact of static errors in ATF2:

Roll error

Roll error for quadrupoles and sextupoles of 200 urad:
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Intensity-dependent effects in 
ATF2

Simulations

Impact of dynamic errors
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Results from February 2018Results from February 2018
Impact of dynamic errors in ATF2:

Simulation conditions

Simulated errors:

Static errors:
- Misalignement of quadrupoles, sextupoles and 
BPMs of 100 um RMS.

- Strength error of quadrupoles and sextupoles of 
0.1% RMS.

- Roll error for quadrupoles and sextupoles of 200 
urad RMS.

Dynamic errors:
- Incoming pos. & ang. jitter of [0.1σ

y
-1.0σ

y
]

Corrections applied:

● One-to-one

● DFS

● WFS

● Knobs (Y, YP D XP XP.*XP XP.*YP XP.*D)

First order Second order

Simulation procedure:

Tracking 200 bunches per machine from the ATF extraction line to the IP.

100 machines with the previously cited static imperfections.

Apply the cited corrections and the knobs on the distribution at the IP.
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Results from February 2018Results from February 2018
Impact of dynamic errors in ATF2:

Incoming position jitter

Incoming position jitter of [0.1σ
y
- 0.5σ

y
]:

w [nm /109
]=(√σ y ,q

2
−σ y , 0

2
) /q
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Results from February 2018Results from February 2018
Impact of dynamic errors in ATF2:

Incoming angle jitter

Incoming angle jitter of [0.1σ
y’- 0.5σ

y’]:

w [nm /109
]=(√σ y ,q

2
−σ y , 0

2
) /q
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Results from February 2018Results from February 2018
Impact of dynamic errors in ATF2:
Incoming position and angle jitter

Incoming position and angle jitter of [0.1σ
y’- 1.0σ

y’]:

w [nm /109
]=(√σ y ,q

2
−σ y , 0

2
) /q
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Results from February 2018Results from February 2018
Impact of dynamic errors in ATF2:

Incoming position and angle jitter summary
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Intensity-dependent effects in 
ATF2

Simulations

Wakefield knobs
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Results from February 2018Results from February 2018
Wakefield knobs

Experimental setup (1/2)

Goal: Use two well known wakefield sources on movers in the ATF2 extraction line 
to compensate the intensity-dependent effects.
Setup: Made of two movers, the first one carries two C-BPMs and the second one 
carries a bellows. 

e- beam
to IP
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Results from February 2018Results from February 2018
Wakefield knobs

Experimental setup (2/2)

Position: The setup was installed in the the ATF2 extraction line between 
QD10BFF and QD10AFF. The phase between the setup and the IP is around 2.5 . π
Thus, the kicks generated by the setup translate into a position offset at IP. 

Position of the setup
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Results from February 2018Results from February 2018
Wakefield knobs
Simulations (1/2)

Position of CBPMs scan for one machine. Position of bellows scan for one machine.

2D scan for 
one machine
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Results from February 2018Results from February 2018
Wakefield knobs
Simulations (2/2)
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Intensity-dependent effects in 
ATF2

Measurements

Impact of corrections
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Results from February 2018Results from February 2018
The IP Beam Size Montior 

or Shintake Monitor
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Results from February 2018Results from February 2018
Dispersion Free Steering

Experimental results
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Results from February 2018Results from February 2018
Wakefield Free Steering

Experimental results
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Results from February 2018Results from February 2018
Dispersion Free Steering and Wakefield Free Steering

Experimental results
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Wakefield knobs
Experimental results*

The wakefield knobs reduced the intensity dependence parameter from 
27.13 nm/109 to 14.51 nm/109. (The IP angle jitter was 70 urad).

w [nm /109
]=(√σ y ,q

2
−σ y ,0

2
)/q *Using the IPBSM 30° mode
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Intensity-dependent effects in 
ATF2

Measurements

Comparison simulations/measurements
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Results from February 2018Results from February 2018
Comparison intensity-dependent effects

Simulations/Measurements
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Impact of short-range and long-
range wakefields in the 380 GeV 

CLIC BDS
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Results from February 2018Results from February 2018
Introduction

The Compact Linear Collider

The Compact Linear Collider is an electron/positron head-on collider at energies of up to 3 TeV. For an optimal 
exploitation of its physics potential, CLIC is intended to be built and operated in three stages, at collision energies 
of 380 GeV, 1.5 TeV and 3 TeV respectively, for a site length ranging from 11 to 50 km. The physics aims of CLIC 
include high-precision measurements of the Higgs boson s interactions with other particles and with itself.’
 
The latest information and parameters can be found in the CLIC Project Implementation Plan [10] (2018).

https://cds.cern.ch/record/2652600/files/CLIC_PIP_20190213.pdf
https://cds.cern.ch/record/2652600/files/CLIC_PIP_20190213.pdf
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Results from February 2018Results from February 2018
Introduction

The Compact Linear Collider

CLIC would use a novel scheme, the two-beam-acceleration. The so-called Drive Beam would run parallel to the 
colliding Main Beam. The Drive Beam is decelerated in special devices called Power Extraction and Transfer 
Structures (PETS) that extract energy from the Drive Beam in the form of powerful Radio Frequency (RF) waves, 
which is then used to accelerate the Main Beam. Up to 90% of the energy of the Drive Beam is extracted and 
efficiently transfered to the Main Beam.
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Results from February 2018Results from February 2018
Introduction

The Compact Linear Collider
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Results from February 2018Results from February 2018
Introduction

The Compact Linear Collider

CLIC is a global collaboration of more than 70 institutes and laboratories from more than 30 countries around the world. 
The CLIC concept was initiated at CERN, however, the theory and the technology are being developed and tested at 
member institutes worldwide.

http://clic-study.web.cern.ch/content/list-members
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Results from February 2018Results from February 2018
Introduction

The CLIC Beam Delivery System (BDS)
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Simulations of the impact of 
short-range wakefields in CLIC

Impact of corrections and 
intensity dependent effects
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Results from February 2018Results from February 2018
Impact of corrections in CLIC

Simulation conditions (1/2)

Simulated errors:

● Static errors:

- Misalignement of quadrupoles, sextupoles 
and BPMs of 50  m RMS.

- Strength error of quadrupoles and 
sextupoles of 0.1% RMS.

- Roll error for quadrupoles and sextupoles 
of 200  rad RMS.

Corrections applied:

● One-to-one

● DFS

● WFS

● Knobs (Y, YP D XP XP.*XP XP.*YP XP.*D)

First order Second order

Simulation procedure:

● 100 machines with the previously cited static imperfections.

● Apply the cited corrections and the knobs on the distribution at the IP.

● Measure the vertical beam size at the IP.

µ

µ
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Results from February 2018Results from February 2018
Impact of corrections in CLIC

Simulation conditions (2/2)

Wakefield sources: X-band cavity BPMs (C-BPMs), wakepotentials calcultated with GdfidL.

The short-range wakefield sources taken into account are the 134 CLIC C-BPMs.
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Results from February 2018Results from February 2018
Impact of corrections 

in the CLIC 380 GeV BDS

Orbit corrections and knobs reduce the beam size by a factor 147.
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Results from February 2018Results from February 2018
Impact of short-range wakefields 

in the CLIC 380 GeV BDS

w [nm /109 e]=
(√σ y ,q

2
−σ y ,0

2
)

q

Short-range wakefields have a slight effect in the 380 GeV BDS.
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Simulations of the impact of 
long-range wakefields in CLIC

In the CLIC 380 GeV BDS
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Long-range wakefields in the CLIC BDS
Resistive walls wakefield

W (z)=
c

πb3 √(
Z 0

σr π z
)L

With b the radius of the beam pipe, Z
0
 the impedance of the vacuum, 

σ
r
 the conductivity of the pipe and L the length of the beam line 

element.

● Electrons going through the pipe interacts with 
the surrounding structure and generates a wake 
field.

● This wake field produces a transverse kick for the 
following bunches.

● The following model is used for the transverse 
wake function [11]:

The long-range wakefield sources taken into account are the resistive walls.

http://cdsweb.cern.ch/record/1266868/files/CERN-THESIS-2010-073.pdf
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Results from February 2018Results from February 2018
Impact of long-range wakefields 

in the CLIC 380 GeV BDS
for a constant offset

Simulation procedure:

● A train of 352 bunches is injected at the entrance of the BDS.

● Each bunch is made of one macro-particle.

● Incoming position and angle offset of the train to study the impact of long-range wakefields.

Amplitude of the incoming offsets: 0.01, 0.05, 0.1    or      with     and     the beam size and 

the beam divergence at the entrance of the BDS.  

σ y 'σ y σ y σ y '

σ y=0.66 µm

σ y '=0.14 µrad
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● Study of the impact of long-range wakefields for a train injected in the BDS with a 
constant vertical position and an angle offset of 0.01    and 0.01     respectively on the 
vertical orbit deflection at the IP normalized by the IP beam size,         (left).

● Same study was done for both vertical and horizontal incoming offsets (right). 

Results from February 2018Results from February 2018
Impact of long-range wakefields 

in the CLIC 380 GeV BDS
for a constant offset

σ y=0.66 µmσ y '=0.14 µrad σ y=2.9nm*

σ y σ y '
Δ y /σ y

*
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Results from February 2018
Impact of long-range wakefields 

in the CLIC 380 GeV BDS
for a random offset

● Study of the impact of long-range wakefields for a train injected in the BDS with a random 
horizontal and vertical position and an angle offsets.

● The distribution of random incoming position and angle offset is a normal distribution with 
a zero mean and variance of 2.6x10-4, leading to a +/  5% incoming vertical and horizontal ‒
angle and position offsets.

Random incoming offsets lead to a negligible effect of long-range wakefields
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Results from February 2018Results from February 2018
Impact of long-range wakefields 

in the CLIC 380 GeV BDS
Luminosity

● Study of the impact of luminosity degradation due to the vertical orbit deflection at the IP with 
Guinea-Pig, a code simulating the impact of beam-beam effects on luminosity and background [12].

https://cds.cern.ch/record/382453/files/ps-99-014.pdf
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Results from February 2018Results from February 2018
Impact of long-range wakefields 

in the CLIC 380 GeV BDS
Summary

Long-range wakefields have a significant impact in the CLIC 380 GeV BDS.
An intra-train feedback system would be necessary in order to achieve the 
luminosity goals.
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Impact of short-range and long-
range wakefields in the 500 GeV 

ILC BDS
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Results from February 2018Results from February 2018
Introduction

The International Linear Collider

The International Linear Collider (ILC) is a 250 500 GeV (extendable to 1 –
TeV) centre-of-mass high- luminosity linear electron-positron collider, based 
on 1.3 GHz superconducting radio-frequency accelerating technology. 
ILC parameters and technologies are summarized in the ILC Technical 
Design Report (2013) [13].

https://edmsdirect.desy.de/pdf/viewer.html?file=https://webservices.desy.de/edms/api/v4/streams/MTIObjectHandle-0002-1~R~xkcwPraadam--mpprdusrmo6~q0StmPdf~mpprdusr~~
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Results from February 2018Results from February 2018
Introduction

The ILC Beam Delivery System (BDS)
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Results from February 2018Results from February 2018
Introduction

The ILC Beam Delivery System (BDS)
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Simulations of the impact of 
short-range wakefields in the ILC

Impact of corrections and 
intensity dependent effects
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Results from February 2018Results from February 2018
Impact of corrections in ILC
Simulation conditions (1/2)

Simulated errors:

● Static errors:

- Misalignement of quadrupoles, sextupoles 
and BPMs of 50  m RMS.

- Strength error of quadrupoles and 
sextupoles of 0.1% RMS.

- Roll error for quadrupoles and sextupoles 
of 200  rad RMS.

Corrections applied:

● One-to-one

● DFS

● WFS

● Knobs (Y, YP D XP XP.*XP XP.*YP XP.*D)

First order Second order

Simulation procedure:

● 100 machines with the previously cited static imperfections.

● Apply the cited corrections and the knobs on the distribution at the IP.

● Measure the vertical beam size at the IP.

µ

µ
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Results from February 2018Results from February 2018
Impact of corrections in ILC
Simulation conditions (2/2)

Wakefield sources: C-band cavity BPMs (C-BPMs), wakepotentials calcultated with GdfidL.

The short-range wakefield sources taken into 
account are the 104 ILC C-BPMs.



18th June 2020 APT seminar 65

Results from February 2018Results from February 2018
Impact of corrections 

in the ILC 250 and 500 GeV BDS

Orbit corrections and knobs reduce the beam size by a factor 5400 for the 500 GeV case.
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Results from February 2018Results from February 2018
Impact of short-range wakefields 

in the 250 and 500 GeV BDS

w [nm /109 e]=
(√σ y ,q

2
−σ y ,0

2
)

q

Short-range wakefield effects are negligible in both 250 and 500 GeV BDS
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Simulations of the impact of
long-range wakefields

In the 500 GeV ILC BDS 
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Long-range wakefields in the ILC BDS
Resistive walls wakefield

W (z)=
c

πb3 √(
Z 0

σrπ z
)L

With b the radius of the beam pipe, Z
0
 the impedance of the vacuum, σ

r
 

the conductivity of the pipe and L the length of the beam line element.

● Electrons going through the pipe interacts with the 
surrounding structure and generates a wake field.

● This wake field produces a transverse kick for the 
following bunches.

● The following model is used for the transverse wake 
function:
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Results from February 2018Results from February 2018
Impact of long-range wakefields 

in the 500 GeV ILC BDS
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Results from February 2018Results from February 2018
Impact of long-range wakefields 

in the 500 GeV ILC BDS
Luminosity
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Results from February 2018Results from February 2018
Impact of long-range wakefields 

in the 500 GeV ILC BDS
Summary

Long-range wakefields have a significant impact in the 500 GeV ILC BDS as 
well. An intra-train feedback system would be necessary in order to achieve 
the luminosity goals.



18th June 2020 APT seminar 72

Results from February 2018Results from February 2018Acknowledgements
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Conclusions – PhD Studies

● The intensity-dependent effects in ATF2 were quantified with PLACET taking 
into account several types of wakefield sources and considering realistic static and 
dynamic imperfections.

● The impact of several corrections (One-to-one, DFS, WFS, knobs) were studied 
with PLACET and showed promising results.

● The simulated and measured intensity-dependent parameters seemed to agree 
really well taking into account realistic simulation conditions in ATF2.

● The intensity-dependent effects due to short-range wakefields are negligible in 
both the CLIC and ILC BDS. 

● The intensity-dependent effects due to long-range wakefields have a significant 
impact on the luminosity in both CLIC and ILC BDS.

● An intra-train feedback system is necessary in order to correct those effects and to 
achieve the required luminosity goals. Such a system has been studied to correct 
the vertical jitters generated by ground motion [14].

● A prototype feedback system was tested in ATF2 and gave promising results [15]. 
The next step will be to implement this feedback and study its impact on the 
luminosity losses due to intensity-dependent effects.

https://arxiv.org/pdf/0902.2915v1.pdf
https://journals.aps.org/prab/pdf/10.1103/PhysRevAccelBeams.21.122802
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Thank you
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