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Outline

• Quadrupole error propagation (‘exact’)

– quadratic approximation in qi,j

• Linear error terms & correction circuits

• Orthogonal quadrupole families

• Parabolic tune shifts & stop-band correction

– example from MI

• Booster circuits

• Proof-of-principle Booster studies 

• Observations & suggestions
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Experience
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– MI-8 proton line from Booster extraction to MI-10 injection

– MI ½-integer resonant extraction circuits

– NuMI primary beamline

– Tevatron Run II dispersionless Interaction Region (IR) upgrade

– C0 IR design for BTeV

– Delivery Ring lattice modifications for transitionless deceleration

– Replacement of the RR G232A/B magnet pair with separated 

function magnets for improved aperture

– Muon M1, M2 and M3 beamlines

– LBNF primary proton line



Quadrupole Error Propagation

• Propagation around a ring is described by the transfer matrix:

• Matrix M can be expanded in terms of sub-matrices Mji & the N perturbing 

quadrupole terms:

• The quadrupole terms in thin-lens approximation are:

• Matrices Mji are functions of the unperturbed lattice parameters: 
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• Switch to normalized co-ordinates                ,                               via:

and its inverse

Then                           and Mji are unitary transformations

• Particle transport described in normalized form: 

or 
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where

• The effect of the quadrupoles becomes more transparent by projecting 

them back to the origin. Sequentially, the matrices are rewritten as

• Where  

• Similarly

• etc, etc, etc . . . until, finally:

where
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is the 'ideal' ring transfer matrix for a tune µ0 = ν0 /2p:M0
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• Quad perturbations can be simplified to:

• Finally, transport of a particle once around the ring is described exactly

by† :
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_________________________________________________________________________

† 
The extension to distributed, rather than point-like, quadrupole sources presents purely a technical
complication and does not introduce additional physics issues.
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Quadratic Approximation to the Exact Transfer Result

• Assuming quad terms are ‘small’ expand the product as:
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• The 2nd term above, which depends on quad products 𝑞𝑖𝑞𝑗, introduces 

a quadratic tune shift. This is relevant for correcting the intrinsic ½ 
integer stopband of a machine (and also for implementing resonant 
extraction). 

• This term will be returned to. 
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Linear Error Terms & Correction Circuits

• The 3rd term doesn’t introduce a tune shift†, but does produce 

a β-wave that advances with twice the phase.
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UNPERTURBED 
TRANSFER

JUST A TUNE SHIFT –
ABSORB IN MACHINE TUNE

THIS IS THE INTERESTING 
TERM

_________________________________________________________________________

† Homework: It is left as an exercise for the interested reader (assuming, optimistically, that such an entity exists), 

to show that this statement is true.

8/13/2020



• To 1st order the perturbed transfer matrix is:

• Assembling the bits & pieces from slides 3 → 6 we find there is a β-wave 

generated that gets progressively worse as the unperturbed tune 

approaches ½.

• This 1st order β-wave is cancelled by the orthogonal quad correction 

circuits . . . 
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• Orthogonality is imposed by requiring that 2 families obey:

• The families’ contributions to the transfer matrix are then:

• The quads in each family have alternating polarity to eliminate the 0th-

harmonic (tune-changing) term and add coherently in the phase-

dependent term.
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Orthogonal Quadrupole Families
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• Each individual quad error can be decomposed into projections on the 2 

orthogonal families, so the total error can be too.
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• The philosophy now is to determine the 
stopband & inject a quad ‘error’ of the 
correct strength & out of phase to cancel it. 

➢ One way to determine the stopband is 
to ramp the Q1 & Q2 families to 
maximize transmission. This is proving 
to be a little difficult to interpret. 

➢ A more accurate technique is to 
measure the quadratic tune shift & 
determine ½-integer correction circuit 
settings that minimize the tune. A 
complete example from MI will follow.
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Parabolic Tune Shift & Stop-band Correction

• The quadratic transfer term again:

• Creates a tune shift:

• where                                 ;     Δ ≡ 𝜇0 − Τ13
2 and:
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Measuring the tune by ramping each family independently determines 
the strength & phase of the stop-band as corresponding to the minima 

and, therefore, the quad family offsets required to cancel it.
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Unless Q is really small this parabolic 
approximation is truly horrible, so don’t use it.

Warning:
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A Correction Example from MI
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QC206 @ +4.0A

+2.5A

QC328 @ -3.0A

-1.0A

QC206 @ +1.5 A
QC328 @ -2.0 ACORRECTED

“AS FOUND”

Dots = Measured

Solid = Predicted
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“As found” harm. quads,

Qx=0.485627

Q206=+1.5A, Q328=-2A,

Qx=0.484487

- John’s algorithm works!

. . . .  Design

. . . .  Measured

Δβ Effects of Stop-Band Cancellation

Y. Alexahin

250m

70m
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Booster Circuits

• For a machine tune exactly on the half-integer at 6.5 the phase advance 

per cell in the design lattice is 97.5o.

• To construct 2 orthogonal quad families we want 2Δ𝜓 to be multiples of 

180o within a family, and 2Δ𝜓 to be an odd multiple of 90o between 

families. These constraints can be satisfied as follows :

– Quads situated diametrically opposite in the ring are separated in 

phase by 90o (2Δ𝜓 =180o), forming one family, and;

– Quads displaced by 6 cells from the 1st set are 45o away (2Δ𝜓 =90o), 

thereby forming the 2nd family. 
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• Possible 13th harmonic orthogonal horizontal quad combinations are:

• In the vertical plane the same patterns apply but with the QLxx substituted 

for QSxx.

• Because of the 24-fold symmetry of the machine these patterns can be 

rotated to any convenient location around the ring.
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• In Booster we have chosen to adopt the 6 quad/family configurations.

• That these are indeed orthogonal families can be easily shown. For 

convenience choose the QS1 location to correspond to 𝜓 = 0 and, with 

97.5o of phase advance per cell,  compute the sums of 𝑐𝑜𝑠(2𝜓) & 𝑠𝑖𝑛(2𝜓) 

around the ring. In Family #1 the cosine sum is +5.8637*|qh1| and the 

sine sum is exactly 0. In Family #2 it is the reverse -- the cosine sum is 0 

and the sine sum is +5.8637*|qh2|.

• The families are orthogonal within their plane, but have collateral impact 

on the other transverse plane:

– At QS locations ൗ
𝛽𝑥

𝛽𝑦
~6 so horizontal corrections will have only a small 

impact on the vertical optics, but;

– At QL locations ൗ
𝛽𝑦

𝛽𝑥
is only ~3 and vertical corrections will bleed about 30% 

into the horizontal plane. Some iteration between x & y may be necessary.
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Proof-of-Principle Booster Studies†
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_________________________________________________________________________

† 
Results are lifted from the following sources:

1) Jeff Eldred, December 11 Preliminary Half-Integer Study, PSP/Taskforce meeting on Jan. 2nd , 

Beams-doc-7905, 2020;

2) Jeff Eldred, Half-Integer Compensation Studies – Jan. 22nd Results, PSP/Taskforce meeting Feb. 13th , 

Beams-doc-8012, 2020;

• There is reasonable agreement between the two approaches, although a 

finer tune mesh is desirable & many more tune measurements.
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• ½ integer compensation enlarges the usable tune space.

8/13/2020



Observations & Suggestions

• The orthogonal quad circuits are impacting the ½ integer resonance, as 

advertised, but considerably more study is needed before quantifying.

• The philosophy for correcting the half-integer is not unlike that of resonant 

extraction:

– Eliminate the intrinsic (unwanted) quad sources driving the ½-integer, then;

– Inject the desirable quadrupole terms.

– Application of Jeff’s recent works deriving relationships for localized β-bumps†

(plus Jeff & Preston Hardcastle’s summer work) should prove very useful.
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• To cancel the intrinsic machine stopband due to the main ring magnets 
requires that the trim quads be Off or they are absorbed in the correction 
process.

_________________________________________________________________________

† Jeff Eldred, Local Beta Bump – Beta Relations for Transfer Matrices,  Beams-doc-8341, 2020.
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Operational vs Design Injection Optics at Qy = 0.53
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That qualifies as a quad ‘error’ 
β-beat propagation
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• Ideally, correction circuit tuning (with trim quads off) should be applied at 

multiple energies through the acceleration cycle, as experience with other 

machines has shown that the intrinsic stopband strength & phase 

changes with main magnet powering. 

Failing that, at a minimum:

• The optimum circuit values determined at injection need to be scaled with 

momentum to apply correction equally throughout the ramp.

Ω
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BACKOFF
SLIDES
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Intensity Reduces Tunespace

26 Jeffrey Eldred | Booster Half-Integer Correction

1/3 nom. intensity, chromaticity -20 at injection

Transmission

after Capture

Transmission

before Extraction

Qx Qx

Qy
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Intensity Reduces Tunespace

27 Jeffrey Eldred | Booster Half-Integer Correction

2/3 nom. intensity, chromaticity -20 at injection

Qx Qx

Qy

Transmission

after Capture

Transmission

before Extraction
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Intensity Reduces Tunespace

28 Jeffrey Eldred | Booster Half-Integer Correction

nominal intensity, chromaticity -20 at injection

Qx Qx

Qy

Transmission

after Capture

Transmission

before Extraction



Tune Space vs Beam Intensity†
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_________________________________________________________________________

† H. Bartosik & a cast of thousands, Lattice Periodicity & Emittance Growth (part 1),  Capstone Event, 2019.
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