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About me

• Undergraduate student at Rhodes College. 
• Project was done during the SIST internship program this summer at 

Fermilab.
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Superconducting magnets

• Superconducting magnets are used 
widely in particle accelerators for 
manipulation of particle beams. 

• Can carry large current with no 
electrical resistance. Can generate 
very intense magnetic field.
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Quenches in superconducting magnets

• In order to maintain superconductivity, 
superconducting magnets typically 
operate at or below liquid helium 
temperature.

• Due to several reasons (mechanical 
imperfections, conductor motions, …), a 
specific spot in the magnet may heat up.

• This can eventually cause the whole 
magnet to become resistive. And with 
huge amount of current pumping 
through, it can be catastrophic.
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♨

Wilson et al. Superconducting magnets for accelerators.



Quenches are dangerous
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In 2008, magnet quench occurred in 100 
magnets at the LHC at CERN, leading to a loss 
of approximately six tons of liquid helium.

The escaping vapor expanded with explosive 
force, damaging a total of 53 superconducting 
magnets (each costs several millions dollar.)

https://en.wikipedia.org/wiki/Large_Hadron_Collider#Quench_incident

https://en.wikipedia.org/wiki/Large_Hadron_Collider


Current quench 
protection systems
• A typical system detects a difference in 

voltage between two halves of the magnet.

• Discharge the magnet by dissipating energy 
either on to the magnets’ own thermal 
mass or externally through a dump 
resistor. 

• System responses after quench happens in 
about ~few ms to tens of seconds.

decision delays, separate cyclic processes are run in
parallel with very high priority.  For example, the data is
streamed from the ADC to the CPU in arrays sized to
match the FIR filter tap size.  The data contained in these
arrays are sampled at some frequency >10KHz, but the
arrays of data are sent to the CPU at some decimated
frequency, which is set by the user.
 The quench process also runs in parallel with a very
high priority.  This tight cyclic process waits for filtered
data to arrive and then sends the hardware a heartbeat,
which is required every 8.2msec.  The quench process
then performs the necessary functions leading up to a
threshold decision and then returns to wait for more data
from the ADC.

 2.7 Digital Quench Detection Design
Optimisation
 Since the minimum sample rate of the ADC is dictated by
the Nyquist criterion, a choice must be made for the
attenuation magnitude of the alias-free dynamic range.
For example, if the desired attenuation magnitude were
60dB, then its corresponding frequency of 9KHz would
dictate a minimum ADC sample rate of 18KHz.  A
reasonable attenuation goal for this system was thought to
be somewhere between 50dB to 60dB.  This would dictate
an ADC sample rate between 12KHZ and 18KHz.

 The final choice for the sample rate was 11,520Hz.
Since the stop band response of the FIR filter is 50dB,
there is little to be gained, with respect to the Bessel filter,
from higher sample rates.  Another good reason for this
choice is that for this sampling rate, the second attenuation
peak in the FIR filter response occurs at 720Hz (see Fig.
3), resulting in 78dB attenuation of this frequency (see
Fig. 4).

 Figure 4: FFT of the Filtered Whole Coil Signal
 
 In addition, 11,520Hz is a common multiple of 15Hz,
which happens to be present in the power bus due to an
external source -- the Booster Ring.  Therefore, off-line
filtering of 15Hz, and many of its harmonics, is made
more efficient for off-line analysis.

 The resulting group delay of the FIR filter associated
with this sample rate is 1.6ms.  Including the Bessel filter,
the total group delay of the system is 1.83ms.

 A decimated sample rate of 1800Hz was chosen based
on the CPU load. Since the quench decision is based on
this data rate, the time resolution is 0.56ms.

A typical plot of a real-time digitally detected quench is
shown in Fig. 5.  The peak noise spikes are ~15mV at a
current of 12400Amps. This is good in comparison to the
threshold setting of 300mV.

Figure 5: Real Time Quench Detect -- Bucked Half Coils

3  CONCLUSIONS
 A Digital Quench Detection system was implemented
using mostly commercially available components.  By
optimising this system to reject noise while minimising
group delay, a successful method of digitally detecting
quenches was accomplished.

The primary advantage to a digital quench system is its
flexibility.  For example, this system was easily coupled
with a Software Quench Detection[2] system used to test
High Temperature Superconducting Leads[3].  Also, since
it is capable of generating multiple trigger events, other
DAQ systems can be triggered at very low trigger
thresholds for special magnet studies. This system has
been in operation for two years and has an excellent
performance history.

4 REFERENCES

[1] M.J. Lamm et al., "A New Facility to test Superconducting
Accelerator Magnets", PAC’97, Vancouver, Canada, 1997
[2] J.M. Nogiec et al., "Architecture of HTS Leads Software Protection
System", PAC’99, New York, USA, 1999
[3] G. Citver et al., "HTS Power Lead Test Results", PAC’99, New
York, USA, 1999
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Proceedings of the 1999 Particle Accelerator Conference, New York, 1999
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See more: R. Denz , Steckert and A. Skoczen

D.F. Orris et al

V1 V2

V1 – V2

https://ieeexplore.ieee.org/document/1643194
https://inspirehep.net/files/87485b29a8d0713159566abefda17801
https://lss.fnal.gov/archive/1999/conf/fermilab-conf-99-449-td.pdf


Challenges

• Quenches are not well-understood: we don’t know whether  “quench 
precursors” exist, and in what kind of data.

• Underlying physics is still not well-understood. We don’t know the exact 
details of what’s happening yet.

• Quench protection systems only detect the quench after it happens, 
thus requiring very short response time O(ms).
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Acoustic sensors for magnet diagnostics

• Non-invasive technique which allows 
better localization of mechanical events.

• Highly advantageous for preventing 
magnet integrity from being jeopardized 
by voltage taps.

• Has been widely adapted for non-
destructive evaluation of mechanical 
stability in various settings.

• Only high-rate data set available for us.
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See M. Marchevsky et al

Sensor with integrated 
cryogenic preamplifier.

https://www.osti.gov/pages/servlets/purl/1262335


Specific setups in two different magnets

MQXFS1d (5 sensors)

• 5 acoustic sensors attached to 
two sides of magnet.
• Sampling rate of 100kHz

MDPCT1b (2 sensors)

9/22/2020 Duc Hoang | Intelliquench 13

• 2 acoustic sensors attached to 
two sides of magnet.
• Sampling rate of 1MHz but was 

filtered and down-sampled to 
100kHz due to noise.

Data are courtesy of 
the LARP, AUP and 
HL-LHC teams and 
Fermilab US-MDP 
team.



Obtain quench data from magnet training

• Superconducting magnets must be 
“trained” to operate at high current. 

• During the training process, magnet is 
repeatedly ran at a low current, and 
then a slightly increased current until a 
natural quench happens.

• Typically, magnet is quenched until 
quench’s current reaches plateau.
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Magnet condition will also change continuously
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Pause
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Machine learning real-time 



Pause

Why machine learning?
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• We have yet to exactly pin down the characterizations of  “quench precursors.” And they might have 
different features among each other.

👉 Impossible to have a one-for-all standard method.
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• We have yet to exactly pin down the characterizations of  “quench precursors.” And they might have 
different features among each other.

👉 Impossible to have a one-for-all standard method.

• Magnet training quenches are certainly due to some release of energy that induces the quench, and 
this released energy can be detected in several ways. 

👉Not only voltage, but also, acoustic data, electromagnetic data, optical data, etc.



Pause

Why machine learning?
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• We have yet to exactly pin down the characterizations of  “quench precursors.” And they might have 
different features among each other.

👉 Impossible to have a one-for-all standard method.

• Magnet training quenches are certainly due to some release of energy that induces the quench, and 
this released energy can be detected in several ways. 

👉Not only voltage, but also acoustic data, electromagnetic data, optical data, etc.

• Machine learning techniques are ideal to analyze and correlate this large amount of different types of 
data in order to find anomalies and detect quench precursors.

👍If properly trained, ML algorithms can find anomalies invisible to human eyes, and can be faster compare to 
traditional methods.



Pause

Why real-time?
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Data pouring in at high rate (100kHz and higher in the future), since many 
events are much clearer or at all visible then. 

Also, the earlier we know the quench, the better.



9/22/2020 Duc Hoang | Intelliquench 21

Superconducting magnets and quenches

Hardware setup and data acquisition

Questions

Questions

Questions

Anomaly detection using machine learning



Machine Learning Overview
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Generic non-linear function approximation tools!

“Machine learning algorithms build a mathematical 
model based on sample data, known as “training 
data”, in order to make predictions or decisions 
without being explicitly programmed to do so.”

https://en.wikipedia.org/wiki/Machine_learning

https://en.wikipedia.org/wiki/Machine_learning


Machine Learning @Fermilab
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How are we approaching this problem?

The problem: we don’t know what we are looking for.  So need to rely on unsupervised learning. 
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Supervised learningUnsupervised learning ⭐

• Data set with no pre-existing labels.

• Example: How many classes of images are in 
my data?

• Anomaly detection: Identify commonalities in 
the data and detect anomalous data points.

• Data set with pre-existing labels

• Example: Cats & Dogs Classifier



What are needed?
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1. Input features (Ingredients).
2. Type of algorithm to process the inputs (Recipe).
3. How to deploy the algorithm in real-time (Serve the food).



What are needed?
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1. Input features (Ingredients).
1. Statistical features.
2. Raw signal data.



Statistical features calculation (ingredients)
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Time label associated with the window.

Window size: 20 milliseconds
Step size: 100 
microseconds

In each window, calculate 2 features: standard deviation, and mean of the amplitude. 
Also features are multiplied across sensors to look for “coherent” spikes.

Inspired by: LANL Earthquake prediction challenge.

https://www.kaggle.com/c/LANL-Earthquake-Prediction


Multiply inputs across sensors
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Sensor 1 – SD

X

X

Sensor 2 – SD

Sensor 3 – SD

Etc.

• 12 inputs in total 
if 5 sensors.

• 6 inputs in total if 
2 sensors. 

SD = Standard Deviation

Time [s]



Scaling inputs

After calculations, every inputs are scaled to between (0,1) so that they 
can be treated equally in the algorithm when training the model. 
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Use the same scaling factors when making predictions.



What are needed?
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2. Type of algorithm to process the inputs (Recipe).
1. Fully-Connected Deep Neural Network (Statistical features)
2. Convolutional Neural Network (Raw signal data)



Exploring two classes of deep learning 
algorithms.

Fully-Connected Deep Neural Network ⭐
• Input: statistical features calculated using 

“rolling window.”

• Less computationally intensive

• Easier to design

Convolutional Neural Network
• Input: raw signals. 👉 Don’t need to 

worry about expert features.

• More computationally intensive.

• Harder to design
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Exploratory



Exploring two classes of deep learning 
algorithms.

Fully-Connected Deep Neural Network ⭐
• Input: statistical features calculated 

using “rolling window.”

• Less computationally intensive

• Easier to design
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Deep Neural Network (DNN)

• Each input is multiplied by a 
weight.
• Weighted values are summed, 

Bias is added.
• Non-linear activation function is 

applied 
• Trained by varying the 

parameters to minimize a loss 
function (quantifies how many 
mistakes the network makes) 
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Input Layer ∈ ℝ⁴ Hidden Layer ∈ ℝ³ Hidden Layer ∈ ℝ² Hidden Layer ∈ ℝ³ Output Layer ∈ ℝ⁴

Auto-encoder DNN (Recipe)
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Statistical 
features

Root mean 
square error 

(RMS)

Large error?  
Anomaly

Encoder Decoder

Compressed info 
(latent space)



Exploring two classes of deep learning 
algorithms.

Convolutional Neural Network
• Input: raw signals. 👉 Don’t need to 

worry about expert features.

• More computationally intensive.

• Harder to design
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Exploratory



Convolutional Neural Network (CNN)
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Exploratory

Input Layer ∈ ℝ⁴ Hidden Layer ∈ ℝ³ Hidden Layer ∈ ℝ² Hidden Layer ∈ ℝ³ Output Layer ∈ ℝ⁴

Auto-encoder DNN
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Statistical 
features

Root mean 
square error 

(RMS)

Large error?  
Anomaly

Encoder Decoder

Compressed info 
(latent space)

Similar idea to DNN, but using raw signals, instead of calculated features

Convolution Operation (Conv)

Conv1D Fully-connected Conv1DRed

Blue

Green

Encoder Latent Space Decoder



What are needed?
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3. How to deploy the algorithm in real-time (Serve the food).
1. Static Learning ❌
2. Dynamic Learning ✅



“Static” learning

• Typically, a model is trained on a specific section of normal data, and 
then used for prediction. 

• However, this is not applicable for this scenario, since there is an 
increasing noise level as we go to higher current. 
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Dynamic learning
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Experiment with auto-encoder 
DNN
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Input Layer ∈ ℝ⁴ Hidden Layer ∈ ℝ³ Hidden Layer ∈ ℝ² Hidden Layer ∈ ℝ³ Output Layer ∈ ℝ⁴

Auto-encoder DNN
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Statistical 
features

Root mean 
square error 

(RMS)

Large error?  
Anomaly

Encoder Decoder

Compressed info 
(latent space)



Network architecture
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Anomalous event visualization
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SD–1

SD–2

SD–1*2

Time [s]

0 is quench detection time
SD = Standard deviation



Anomalous event visualization – 2
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MA = Mean Amplitude

MA–1

MA–2

Time [s]

MA–1*2

Reconstruction 
Loss



Visualize latent space
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Input Layer ∈ ℝ⁴ Hidden Layer ∈ ℝ³ Hidden Layer ∈ ℝ² Hidden Layer ∈ ℝ³ Output Layer ∈ ℝ⁴

Auto-encoder DNN
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Threshold setting for registering anomalies
• Quenches at different currents may have different characteristics. 
• Events must be more “anomalous” at lower current. Prevent false 

positives.
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Define Procedure

• Objective: Define a set procedure on known data and use it on unseen 
data to see what happens.

• Procedure: Start dynamic learning when current reached 9/10 max 
current of previous quench.
• Operating under magnet training condition.
• Quench in next ramp wouldn’t drop too much. 

• Tried this out on MQXFS1d (5 sensors) first, and a randomized 
experiment with MDPCT1b (2 sensors).
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Initial observations in MQXFS1d (5 sensors) 
data
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Zoomed in 
(-25,0)s

Found interesting events near quench!



Categorize anomalies in quenches
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Experiment on MDPCT1b (2 sensors) data 

• Randomly picked ~10% of the quenches to tune the initial and final 
thresholds. (Started from 3.0 and decrease until 1.6)
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Anomalous events on all quenches in 
MDPCT1b (2 sensors) 
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• Simulation of a real-
time system.

• Triggered on 77% of 
the quenches.  

Randomly selected quench



Anomalies time distribution in MDPCT1b 
(2 sensors)
• Nearly all the detected events fall within 15 seconds. 

9/22/2020 Duc Hoang | Intelliquench 51

Median is around 2.5 seconds before quench



False Positives?

• Kaiser effects can interfere with 
triggering, since it introduces noises 
into the system. 

• However, the system is still able to 
detect anomalies in quenches that 
should not have Kaiser effects. Or 
anomalies before Kaiser effects should 
happen.

• Future plans include better 
characterizations of the events not 
related to Kaiser effects.
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Kaiser effect: acoustic signals become much noisier if 
the current reaches the previous quench’s current.



Convolutional Neural Network 
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Exploratory



CNN for reconstruction of raw signals
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Exploratory

Time [s]

Different 
segments of 
training data



CNN anomaly

• No extensive experiment yet, but promising as an alternative to DNN 
(no need to manually pick features).
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Exploratory

CNN’s reconstruction loss near quench (Quench Index 22 – 5 sensors). 

Can already recognize the same thing as DNN.



Hardware implementation
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• With increasing data rate, need to perform all steps as fast as possible to 
being a real “dynamic/online” system.

FAST

FAST

FAST



Inference
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FAST

• The hls4ml software package, developed by collaborators at FNAL and 
else where, can be used to implement deep learning models for fast 
inference on FPGAs.  

anomalous events long after (and before) the previous quench’s maximum current is reached, as260

indicated in figure 10 and 11. Additionally, we also detected anomalous event for quenches that261

should not be influenced by the Kaiser e�ect, i.e in quenches that have lower current than previous262

maximum current, or the very first quench in the magnet. Thus, while the Kaiser is a valid concern263

for causing false positives, our system can already mitigate its e�ects, which will hopefully be264

eliminated completely with further understanding and improvement of the system.265

4 System’s implementation on FPGAs266

In this section, we employ the hls4ml tool to investigate the DNN models’ hardware implementa-267

tion. The pre-processing phase can be straightforwardly hard-coded into dedicated hardware. Thus,268

we only evaluate the models’ potential as a real-time processing system by looking into its hardware269

resource usage and latency. The latency, initial interval (II), and resource usage of the FPGA270

firmware synthesized from the HLS implementations of the models are summarized in table 2. The271

table shows utilization of resources such as digital signal processing units (DSPs), look-up tables272

(LUTs), flip-flops (FFs), and block RAM (BRAM) within the limits of Xilinx Kintex UltraScale273

FPGA (part number xcku115-flvb21�4-2-i). The FPGA part has 5,520 DSPs, 663,360 LUTs,274

1,326,720 FFs, and 77.8 Mb of BRAM, and a clock frequency of 200 MHz [37].275

Model Latency
(cycles)

Interval
(cycles)

DSP (103) LUT (103) FF (103) BRAM (Mb)

MQXFS1d 21 (105ns) 1 0.72 [13%] 16.7 [2%] 39.2 [5%] 0.018 [0%]
MDPCT1b 20 (100ns) 1 0.26 [4%] 14.8 [1%] 5.9 [1%] 0.01125 [0%]

Table 2: Summary of the latency, II, FPGA resource usage metrics of the synthesized firmware for
two models in this study. The utilized percentage of the targeted FPGA resources are denoted in
the square brackets.

It should be noted that the latency of the model is about 20-21 clock cycles, which is equivalent276

to 100-105 ns. This is well below the sampling rate of the sensors, which if run at 100kHz takes in277

1 new data point every 10 `B. Thus, this indicates that the models can keep up with the sensors’278

sampling rate even if it is increased in the future. Additionally, the resource utilization shows that279

the system can be easily fitted on an FPGA, which means that it can be accommodating for many280

more streaming channels.281

5 Summary and Outlook282

In this work, we introduced a dynamic learning & threshold procedure using AE-DNN to predict283

quenches under magnet training conditions. Our randomized experiment, by just fitting the threshold284

hyper-parameter, shows that we can predict a large number of quenches using the system. This hints285

at the existence of quench precursors in acoustic data, which then can be utilized in an anomaly286

detection system such as ours to give warnings of magnet quenches. Additionally, we showed that287

this system unitizes minimal FPGA resources and have ultra low latency, which can help us realize288

– 13 –

https://github.com/hls-fpga-machine-learning/hls4ml


Data pre-processing and model training

• Fast data pre-processing can be done by implementing them on FPGAs. 
But this depends on the complexity of the process.

• There are no worked out solution for fast training, but potential solution 
might include putting a GPU on site. 👉 This also depends on the 
model’s complexity.
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FAST



Summary

• Investigated deep learning anomaly detection techniques for clues of 
“quench precursors.”

• Point to interesting anomalous events seconds before the quench in 
acoustic data. Used these events to “predict” 77% of quenches in a 
randomized experiment within 15 seconds.

• Realistic dynamic learning workflow for real-time processing of 
streaming data.
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Outlook

• Study and understand the detected events and their relationship with 
the quench.

• Improve data taking process, expand to many more input variables, and 
create curated datasets for benchmarking. 

• Can use the same ideas for monitoring of several other types of 
operations at Fermilab.  And potentially applicable to high temperature 
superconductors.
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Backups
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3D latent space
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Event characterization
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Quench data in two magnets

MQXFS1d (5 sensors) MDPCT1b (2 sensors)

9/22/2020 Duc Hoang | Intelliquench 65

Not totally consecutive quench



General setup

• We attached several acoustic sensors around the magnet
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Sensor 

Volt

Time [s]


