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About me

* Undergraduate student at Rhodes College.

* Project was done during the SIST internship program this summer at
Fermilab.
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@ Superconducting magnets and quenches



Superconducting magnets

* Superconducting magnets are used
widely in particle accelerators for
manipulation of particle beams.

* Can carry large current with no
electrical resistance. Can generate
very intense magnetic field.
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Quenches in superconducting magnets

* In order to maintain superconductivity,
superconducting magnets typically
operate at or below liquid helium
temperature.

* Due 1o several reasons (mechanical
imperfections, conductor motions, ...), a
specific spot in the magnet may heat up.

* This can eventually cause the whole
magnet to become resistive. And with
huge amount of current pumping
through, it can be catastrophic.
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Growth of the resistive zone

the quench starts at a point and then grows
in three dimensions via the combined
effects of Joule heating and

Wilson et al. Superconducting magnets for accelerators.



Quenches are dangerous

magnets at the LHC at CERN; leading to a loss

(\ In 2008, magnet quench occurred in 100
*
¢ of approximately six tons of liquid helium.

The escaping vapor expanded with explosive

A force, damaging a total of 53 superconducting
magnets (each costs several millions dollar,)

https://en.wikipedia.org/wiki/Large Hadron Collider#Quench incident
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https://en.wikipedia.org/wiki/Large_Hadron_Collider

Current quench
protection systems

* A typical system detects a difference in
voltage between two halves of the magnet.

* Discharge the magnet by dissipating energy
either on to the magnets’ own thermal
mass or externally through a dump
resistor.

* System responses after quench happens in
about ~few ms to tens of seconds.
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See more: R. Denz , Steckert and A. Skoczen



https://ieeexplore.ieee.org/document/1643194
https://inspirehep.net/files/87485b29a8d0713159566abefda17801
https://lss.fnal.gov/archive/1999/conf/fermilab-conf-99-449-td.pdf

Challenges

* Quenches are not well-understood: we dont know whether “quench
precursors’ exist, and in what kind of data.

* Underlying physics is still not well-understood. We don't know the exact
detalls of what's happening yet.

* Quench protection systems only detect the quench after it happens,
thus requiring very short response time O(ms).
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Hardware setup and data acquisition



Acoustic sensors for magnet diagnostics

. . . . Sensor with integrated
Non-invasive technique which allows cryogenic preamplifier.
better localization of mechanical events.

Highly advantageous for preventing
magnet integrity from being jeopardized
by voltage taps.

Has been widely adapted for non-
destructive evaluation of mechanical
stability In various settings.

220nF L
(1000V DC)

Only high-rate data set available for us.

See M. Marchevsky et dl
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https://www.osti.gov/pages/servlets/purl/1262335

Data are courtesy of
the LARP, AUP and

Specific setups in two different magnets  ~rc oo

MQXFSId (5 sensors)

e 5 acoustic sensors attached to
two sides of magnet.

* Sampling rate of 100kHz

Longitudinal distance between ( Q) (O
Lead and Return end sensor planes
is 155 cm

Fermilab US-MDP
team.

MDPCT Ib (2 sensors)

e ) acoustic sensors attached to
two sides of magnet.

* Sampling rate of IMHz but was

filtered and down-sampled to
|00kHz due to noise.

MDPCT1b non-filtered sensor data
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2
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Obtain quench data from magnet training

° Superconducting magnets must be Maximum currrent of MDPCT1b's quenches
10000 A
(o : A ' Current at quench oco0®
trained’ to operate at high current. ° ] s e
9500 - ...o“..
osee®
* During the training process, magnet is z ... o’
— )
repeatedly ran at a low current,and ¢ ..-°
then a slightly increased current untila § ssooy o
natural quench happens. .
8000 -
]
* Typically, magnet is quenched untll 7500 ¢ | | , , ,
quench’s current reaches plateau. ° P Quenchindex

Magnet condition will also change continuously
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Machine learning

912212020

Pause

real-time
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Pause

Why machine leaming?

* We have yet to exactly pin down the characterizations of “quench precursors.” And they might have
different features among each other.

“" Impossible to have a one-for-all standard method.
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Pause

Why machine learning?

* We have yet to exactly pin down the characterizations of “quench precursors.” And they might have

different features among each other.

“" Impossible to have a one-for-all standard method.

* Magnet training quenches are certainly due to some release of energy that induces the quench, and
this released energy can be detected in several ways.

“Not only voltage, but also, acoustic data, electromagnetic data, optical data, etc.
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Pause

Why machine learning?

* We have yet to exactly pin down the characterizations of “quench precursors.” And they might have
different features among each other.

“" Impossible to have a one-for-all standard method.

* Magnet training quenches are certainly due to some release of energy that induces the quench, and
this released energy can be detected in several ways.

“Not only voltage, but also acoustic data, electromagnetic data, optical data, etc.

* Machine learning techniques are ideal to analyze and correlate this large amount of different types of
data in order to find anomalies and detect quench precursors.

“£|f properly trained, ML algorithms can find anomalies invisible to human eyes, and can be faster compare to
traditional methods.

912212020 Duc Hoang | Intelliquench |9



Pause

Why real-time?

Data pouring in at high rate (100kHz and higher in the future), since many
events are much clearer or at all visible then.

Also, the earlier we know the quench, the better.
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Anomaly detection using machine learning




Machine Learning Overview

Artificial Intelligence
“Machine learning algorithms build a mathematical
model based on sample data, known as “training
data”, in order to make predictions or decisions
without being explicitly programmed to do so.”

Deep
Learning https://en.wikipedia.org/wiki/Machine_learning

Generic non-linear function approximation tools!
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https://en.wikipedia.org/wiki/Machine_learning

achine Learning @Fermilab
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How are we approaching this problem?

The problem: we don't know what we are looking for. So need to rely on unsupervised learming.

Unsupervised learning i<

* Data set with no pre-existing labels.

my data’

* Anomaly detection: |dentify commonalities in
the data and detect anomalous data points.

912212020

Example: How many classes of images are in

Duc Hoang | Intelliquench

Supervised learning

* Data set with pre-existing labels

* Example: Cats & Dogs Classifier

24



What are needed?

|, Input features (Ingredients).
2. Type of algorithm to process the inputs (Recipe).
3. How to deploy the algorithm in real-time (Serve the food).

912212020 Duc Hoang | Intelliquench
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What are needed?

|, Input features (Ingredients).
|, Statistical features.
2. Raw signal data.
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Statistical features calculation (ingredients)

Inspired by: LANL Earthquake prediction challenge.

Step size: 100 . ) .
microseconds Window size: 20 milliseconds

- b 4 e

r-------

|
|
|
|
.
Time label associated with the window.

In each window, calculate 2 features: standard deviation, and mean of the amplitude,
Also features are multiplied across sensors to look for “coherent” spikes.
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https://www.kaggle.com/c/LANL-Earthquake-Prediction

Multiply inputs across sensors

SD = Standard Deviation

0.012 A

0.010
0.008

SeﬂSOr | — SD 0.006 -

0.004

0.020 - b |2 iﬂpUTS in total

0015 - if 5 sensors.
Sensor 2 —SD ...

0005 | ' \ Wl ‘ ' WYY * 6 inputs in total if
2 sensors.

0.015 |

Sensor 3 — SD 200}

0.005 -

Ete. Time [s]
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Scaling inputs

After calculations, every inputs are scaled to between (0, 1) so that they
can be treated equally in the algorithm when training the model.

L — Lmin

Lscaled —
Lmar — Lmin

Use the same scaling factors when making predictions.

912212020 Duc Hoang | Intelliquench
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What are needed?

2. Type of algorithm to process the inputs (Recipe).
|, Fully-Connected Deep Neural Network (Statistical features)
2. Convolutional Neural Network (Raw signal data)
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Exploring two classes of deep learning
algorithms.

63\'0/0'6’
Fully-Connected Deep Neural Network i< Convolutional Neural Network ¥

* Input: statistical features calculated using | * Input: raw signals. © Don't need to
“rolling window.” worry about expert features.

* Less computationally intensive * More computationally intensive.

* Easier to design * Harder to design
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Exploring two classes of deep learning
algorithms.

Fully-Connected Deep Neural Network

* Input: statistical features calculated -
using “‘rolling window.”

* Less computationally intensive

* Easier to design
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Dendrite

Axon Terminal

Node of
Ranvier

Cell body

Deep Neural Network (DNN)

Schwann cell

Myelin sheath

* Fach input i1s multiplied by a Nucleds
weight T wp

>@ synapse
axon from a neuron
woTo

* Weighted values are summed,
Bias Is added.

 Non-linear activation function is
applied |

* Trained by varying the
parameters to minimize a loss e/

function (quantifies how many [
/

cell body f (Z Wi+ b)
output axon

activation
function

y max(w!z + by, wl T + b
input layer (wie+brwy +b)

mistakes the network makes) mo
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Auto-encoder DNN (Recipe)

Statistical
features

Compressed info
(latent space)
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square error
(RMS)

Large error?
Anomaly
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Exploring two classes of deep learning

algorithms.
63\'0/0'6’
= Convolutional Neural Network %

e Input: raw signals. © Don’t need to
worry about expert features.

* More computationally intensive.

* Harder to design
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What are needed?

3. How to deploy the algorithm in real-time (Serve the food).

|, Static Learning
2. Dynamic Learning

912212020 Duc Hoang | Intelliquench 37



“Static” learning

* Typically, a model is trained on a specific section of normal data, and
then used for prediction.

* However, this is not applicable for this scenario, since there is an
Increasing noise level as we go to higher current.

logio(loss) of static learning

logio(loss)
o N > [«))

|
[}
=}

s loseila bt balel,

-70 —60

50 —40 ~30 ] 0
Time [s]
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Dynamic learning

For each 10-second section

Training model

Update model’s

state and 4

reconstruction
loss distribution

Data
pre-processing

Base model

Evaluation of

reconstruction
loss.

912212020 Duc Hoang | Intelliquench

.| Greater than
threshold? trigger.
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Experiment with auto-encoder

912212020

DNN

Compressed info
(latent space)

Statistical
features

|

RMSE =

N
Z(ym — )2
i=1

Root mean

Encoder

Decoder
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square error

(RMS)

Large error?

Anomaly
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Network architecture

MQXFS1d (5 sensors) MDPCT1b (2 sensors) %T?
‘ 12 inputs ‘ ‘ 6 inputs
2 2 i Steyeye
Encoder 6 nodes 4 nodes g
activation: ELU activation: ELU QPP
| 3 3 o
Compressed representation 3 nodes 2 nodes
(Latent space) activation: ELU activation: ELU
Decoder .6 nf)des .4 n.OdeS )
activation: ELU activation: ELU

=
g
I
z

Reconstructed Output ‘ 12 outputs ‘ ‘ 6 outputs

Klewouy
;lolie ebie

(SNY)
10418 asenbs
ueawl 100y
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Anomalous event visualization e
IS quench detection time
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Anomalous event visualization — 2

MA = Mean Amplitude
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Visualize latent space

Compressed info
(latent space)

Statistical
features

Latent space of an anomalous event in MDPCT1b data

912212020
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i=1 5 .
Root mean
square error 4 -
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Large error?
Anomaly

Anomalous event

Duc Hoang | Intelliquench

1.5

44



Threshold setting for registering anomalies

* Quenches at different currents may have different characteristics.

e Fvents must be more “anomalous’” at lower current. Prevent false
positives.

o

Trigger Threshold 1

Initial threshold

-]

Reached previous ramp's

10 seconds -
/| maximum current
Final threshold |- =-=-=-=-=-=-=-=-=-"=-"=--"---=----

Time[s]/Current[A]

\

912212020 Duc Hoang | Intelliquench
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Define Procedure

* Objective: Define a set procedure on known data and use it on unseen
data to see what happens.

* Procedure: Start dynamic learning when current reached 9/10 max
current of previous quench.
* Operating under magnet training condition.
* Quench in next ramp wouldn’t drop too much.

* Tried this out on MQXFSId (5 sensors) first, and a randomized
experiment with MDPCT |b (2 sensors).

912212020 Duc Hoang | Intelliquench
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Quench Index

Initial observations in MQXFSId (5 sensors)

data

,7 Anomaly events in MQXFS1d quenches (log;g threshold 5.5 > 2.6)

Quench Index

7/
7/
7/
/7
7/
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4
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1 S | Zoomedin
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Time (s)
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10
Time (s)

-20 -15

Found interesting events near quench!
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Categorize anomalies in quenches

912212020

Not triggered at
all: 1/14

Trigger points
entirely inside
25s: 1114

Only at quench
time: 1/14

14 Quenches

Trigger points
within 25s:
12/14

Seconds
before the
quench: 10/14

Trigger points
entirely outside
25s: 1/14

Trigger points
before -25s as
well: 1/14
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Experiment on MDPCT |b (2 sensors) data

* Randomly picked ~10% of the quenches to tune the initial and final
thresholds. (Started from 3.0 and decrease until 1.6)

Anomaly events in MDPCT1b quenches (log;g threshold 3.0 > 1.6)

71 m Reached previous max current u e»me
& Training started
19 A mee
X
Q
O 40 A o——o—o
£
<
[@]
c
U 424 o—— A
-]
(04
43 A o—ene®
57 A e
-50 -40 -30 -20 -10 0

Time (s)
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Anomalous events on all quenches in
MDPCT Ib (2 sensors)

e Simulation of a real-
time system.

* Tnggered on //% of
the quenches.

912212020

Current (A)
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Anomalies time distribution in MDPCT Ib
(2 sensors)

* Nearly all the detected events fall within |5 seconds.

Time distribution of detected anomalies in MDPCT1b

¢ ¢ ¢ LK X X 1 OOI '

-25 -20 -15 -10 -5 ‘ 0

Time [s]

Median is around 2.5 seconds before quench
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False Positives!?

. Ramp21
Ramp20
Ramp19

* Kaiser effects can interfere with
triggering, since It introduces noises
into the system.

* However, the system is still able to
detect anomalies in quenches that
should not have Kaiser effects. Or
anomalies before Kaiser effects should

happen.

RMS Volts for 20 ms window

102

Magnet Current? x108

* Future plans include better
characterizations of the events not
related to Kaiser effects.

Kaiser effect: acoustic signals become much noisier if
the current reaches the previous quench’s current.
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Convolutional Neural Network
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CNN for reconstruction of raw signals

0.02

—— Original data
0.01 4 — Reconstructed output
0.00 A A"
—0.01 A
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* No extensive experiment yet, but promising as an alternative to DNN
(no need to manually pick features).

Can already recognize the same thing as DNN.

CNN's reconstruction loss near quench (Quench Index 22 — 5 sensors)\

0.06 \

Time [s]
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Hardware implementation

* With increasing data rate, need to perform all steps as fast as possible to
being a real “dynamic/online” system.

For each 10-second section

Training model *@
Update model’s 9

state and 2
reconstruction

loss distribution
~
Data

pre-processing

'(:487
Evaluation of Greater than

lreconstructlon | threshold? trigger.
0SS.

Base model
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Inference hls 4 ml

* The hls4ml software package, developed by collaborators at FNAL and
else where, can be used to implement deep learning models for fast

iInference on FPGA:s.

912212020

L Interval

Model atency nerval | psp (103 | LUT (10%) | FF(10%) | BRAM (Mb)
(cycles) (cycles)

MOXES1d | 21 (105ns) | 1 0.72 [13%] | 16.7 [2%] | 39.2 [5%] | 0.018 [0%]

MDPCTIb | 20 (100ns) | 1 0.26 [4%] | 148 [1%] | 5.9 [1%] | 0.01125 [0%]

Duc Hoang | Intelliquench
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https://github.com/hls-fpga-machine-learning/hls4ml

Data pre-processing and model train

* Fast data pre-processing can be done by implementing them on FPGAs.
But this depends on the complexity of the process.

* There are no worked out solution for fast training, but potential solution
might include putting a GPU on site. © This also depends on the
model's complexity.
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Summary < X @
* Investigated deep learning anomaly detection technigues for clues of
“quench precursors.”

* Point to interesting anomalous events seconds before the quench in
acoustic data. Used these events to "predict” /7% of quenches in a
randomized experiment within |5 seconds.

* Realistic dynamic learning workflow for real-time processing of
streaming data.



Outlook < X @
* Study and understand the detected events and their relationship with
the quench.

* Improve data taking process, expand to many more input variables, and
create curated datasets for benchmarking.

* Can use the same ideas for monitoring of several other types of
operations at Fermilab. And potentially applicable to high temperature
superconductors.
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Questions
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Backups
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3D latent space

912212020

Latent space of normal vs abnormal points

25
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e normal latent
| anomaly latent
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70.25
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8 8 & 8

—
o

Frequency [kHz]

o

Event characterization

Spectrogram of sensor ai0
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Quench data in two magnets

MQXFSId (5 sensors)

Maximum currrent of MQXFS1d's quenches
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MDPCT Ib (2 sensors)

Maximum currrent of MDPCT1b's quenches
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General setup

* We attached several acoustic sensors around the magnet

VT [ — e

Sensor
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