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Typical Residual Gas Estimates at Low Energy 
  Lifetime estimate due to single scattering 
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 Assumes that the lifetime is dominated by electromagnetic scattering, 
i.e. the following can be neglected: 
 Nuclear scattering 
 Bremsstrahlung  
 Inelastic scattering on electrons  

 Emittance growth due to multiple scattering  
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where  is set by atom size  

  is set by nuclear size or the ring 
acceptance  

 For IOTA the top Eq. yields close estimate, but the bottom does not  
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Electromagnetic Scattering Cross-section  
 Classical estimate for screened Coulomb interaction 
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yields the scattering angle (small 
scattering angle approximation): 

 
 Although the scattering angle decays exponentially tot(r) diverges 

 Quantum mechanical calculation   
in the Born approximation yields:  
 Adding scattering on electrons we obtain  
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 Total cross-section is finite  
 Typically, the maximum scattering max

k  is larger than the acceptance 
and can be neglected  
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Common Treatment of Single and Multiple Scattering  
 Separation of single and multiple scattering simplifies the matter but 

is not adequate in many applications  
 In particular, it does not allow to describe accurately non-Gaussian tails near 

the core 
 Integrodifferential equation addresses this problem  
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 where averaging is performed over betatron  
motion and ring circumference  

 the phase and the action are determined as:  
 In further consideration we assume  

 One gas species with uniform distribution over ring  
 Smooth lattice approximation: x(s)=x    
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Kernel of the Integrodifferential Equation 
 Transition to the action phase variables and integration over ´ yields  
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 The kernel can be expressed through the elliptic integrals  
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Properties of the Kernel  
 The kernel is symmetric:  
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 The kernel conserves the particle 

number: 
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 The kernel logarithmically diverges 
 at I I    

 At Tevatron times for numerical 
calculations we used  
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This approximation  
o conserves the number of particles 
o Has correct asymptotic in the tails  
o  works well if the distribution width is 

much larger than Im ( , mI I I ) 
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Scattering in Medium vs Scattering in Phase Space 
 From math point of view the particle 

scattering in the plane of transverse angles 
and the particle scattering in the phase 
space of an accelerator (one plane 
scattering) are identical  
 The only difference are the cross-sections 
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Absence of Cooling 
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Particle Scattering in the Absence of Cooling 
 In the absence of cooling the integrodifferential equation has 

analytical solution 
 The solution uses the same idea as for the Moliere scattering 

 Rewrite integrodifferential equation in 1 & 2 variables instead of 
action ( 1 2cos , sinI I     )  
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 Perform 2D Fourier transform of equation and initial distribution 
 Perform integrations which result in a dependence of harmonics on t  
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 Perform inverse Fourier transform 
 Account for axial symmetry and integrate over angle 
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Scattering for Point-like Initial Distribution 
 Initial distribution 1 2 0 1 1 , 20
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Scattering for Point-like Initial Distribution (2) 
 Rare strong kicks result in 

 Central limit theorem does not work 
 Long non-Gaussian tails 

 Logarithmic dependence of 
distribution width on time 
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Scattering for Point-like Initial Distribution: Small  
 Integral has poor convergence for small  collisionsN   because there is a 

-function left from the initial distribution 
 Regularization helps for convergence   
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 The shape of the distribution 
experiences fundamental changes 
for < 16  
 from the Gaussian with tails to 

the distribution diverging at 
0 

 Therefore there is no 
straightforward way to 
determine the distribution width 
for  < ~16  
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Scattering for Point-like Initial Distribution: Small (2) 
 For very small time (<<1) we can neglect secondary scatterings  
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 This equation makes reasonably good approximation for  < 0.5   

 
 Rms scattering angle diverges logarithmically: 
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Gas Scattering in the 
Presence of Cooling 
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Gas Scattering in the Presence of Cooling  
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 Transiting to the dimensionless action ˆ / mI I I  and time t   and 
looking for the equilibrium distribution one obtains: 
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 Regrouping we have:   
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where ˆ /totB cn    is the number of collisions in one damping time  
 

 The RHS is always positive => if ˆ 1B   then ˆ/f I  should by negative 
and approach   for ˆ 0I   

 This condition separates to classes of solutions 
 Finite for ˆ 1B   
 Diverging at ˆ 0I   for ˆ 1B   
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Equilibrium Distribution for Very Strong Cooling  
 In the case of strong damping, ˆ 1B , the distribution function can be 

obtained if we assume that all scattering happens from zero amplitude 
 Substituting  into  

and integrating  
one obtains:  
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Equilibrium Distribution  for Strong Cooling  
 For ˆ 1B   we can roughly approximate the solution by the following equation 
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 This approximation coincides well with the previous slide equation for ˆ 0.1B   
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Equilibrium Distribution for Weak Cooling  
 Divergence at zero action disappears for ˆ 1B   

 
 For ˆ 3B   the distribution becomes more like the Gaussian with non-

Gaussian tail which value is decreasing with B̂  increase  
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Numerical Solution 
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Numerical Solution 
 Split action into the boxes;  
 Find transition probabilities between boxes  
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Numerical Solution (2) 
 Other elements can be found using: , 1 1, , ,,n n n n n n n m

m n

w w w w 


    
The 2nd equation assumes particle conservation.  
If required it is straightforward to account for the particle loss  

, ,
1 1ˆ ,
2 2n n n m

m n m N
w w J W n J m J



 

                  
   

 

 
Dependence of 

, 1n nw 
 (red points) and 

, 2n nw 
 (blue 

points) on n for different I; n (which counts 
matrix elements) starts from 0. 



Particle Scattering in the Residual Gas, V. Lebedev, November 2020     Page | 22 

 

 

 

 

Practical Applications 
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Vacuum and Noise of Dipoles in Tevatron Run II  
 To built the luminosity evolution model we needed to know all sources 

of beam diffusion:  
 IBS,  
 RF noise,  
 scattering at the residual gas  
 noise in dipoles (B/B ~10-9 - 10-10 is a big deal) 

 Common treatment of single and multiple scattering was developed to 
understand a contribution of magnetic noise in dipoles  
 This noise generates Gaussian distribution while scattering 

generates non-Gaussian tails  
 The measurements we done with small intensity continuous beam to 

avoid IBS 
 Only measurements at injection energy could be done because of 

quenching   
 The conclusion was: at least 80% of the emittance growth at 150 MeV 

comes from the gas scattering for small beam current (no IBS) 
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Vacuum and Noise of Dipoles in Tevatron Run II (2) 
 First, we scraped 

the beam to ~75% 
to create step in 
the distribution 

 Waited ~30-60 
minutes to get the 
diffusion to smear 
the distribution 

 Final entire beam 
scraping yielded the 
integral distribution 

 Comparison with 
theory exhibited non-Gaussian tails 
which value proved that at least 
80% of emittance growth is related 
to the gas scattering  
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Vacuum and Noise of Dipoles in Tevatron Run II (3) 

 
 Later we found out that the statement that the gas scattering is 

more important is correct at injection energy only 
 At the 1 TeV energy the e.-m. scattering was reduced by 

(1000/150)2~50 times, but e.-m. noise effect was not expected to 
change much  

 Measurements of IBS showed that the magnetic noise contributes 
much more at the collision energy than the gas scattering  
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Beam Lifetime in IOTA  
 At small intensity the measured beam 

lifetime is ~175 min 
 Other (measured) parameters:  

 acceptances: xm=22 m, ym=40 m, pm=0.27% 
 average -function: xa=2.16 m, ya=1.94 m 

 Contributions to lifetime come from  
 elastic gas scattering (discussed here) 
 inelastic scattering on atomic electrons 
 Bremsstrahlung (~4%) 
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Beam Lifetime in IOTA (2)  
 If only elastic scattering is accounted  

 
2

1
2 3

( )2 ( ) ( ) , ( ) 1 ( )ye x
gas eff eff k k k

kxm ym s over atoms

scr s n s n s Z Z n s
 

   


 
     

 
  

 Peff=4.810-8 Torr of atomic hydrogen 
equivalent 

 Accounting of inelastic scattering and 
bremsstrahlung yields better vacuum   
~4.210-8 Torr (atomic H equivalent) 

 The maximum scattering angle is 
determined by the ring acceptance 
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Emittance Growth due to Gas Scattering in IOTA   
 Vertical rms emittance set by elastic scattering  

ˆˆ 4 ˆ ˆln , 1 , 1
2

b
b

IBI I B
e

 
  

 
   

summing over all gas species and transiting from 
dimensionless variables one obtains   

   min
min

41 ˆ ln
2

b
y k k

k k

IB I
e I


 

   
 

  

 It yields yGas = 3.8 nm while measured value is 9 times smaller 0.42 nm   
 For perfectly decoupled machine there is a contribution of SR to vertical 

emittance due to angular spread of radiated photons: 
 

That results in y = 0.33 pm (negligible in practice) 
 Measurement show that the major contribution of SR comes from coupling: 

xy  0.5% => ySR = 0.25 nm  
 I.e. the gas scattering emittance greatly exceeds the measurement 
 The measurement does not see non-Gaussian tails.  

!!! In the measurements we fit the central bright spot and ignore tails   

1 55
2 32 3

y
y

em c







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Equilibrium Vertical Emittance in IOTA   
 We add diffusion due to SR 

 
0

ˆ ˆ ˆ ˆ ˆ ˆ( , ) ( , )d ,ˆ
ˆ

ˆ ˆ

bI

SR b
f If B W I I f I t I f II

I
ID

II
             

  
       

 
ySR = 0.25 nm, Im = 2.5 nm 

 Gas scattering increases the Gaussian core width in 1.35 times. 
The core includes 72% of particles, However the rms emittance exceeds ySR by~20 times 
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Conclusions 
 A study of beam emittance evolution in IOTA included an analysis of 

IBS and gas scattering  
 Observations at small beam intensity exhibited large discrepancy 

between the measured and predicted vertical beam sizes 
 That forced us to look for a reason 

 Further analysis resulted in that the gas scattering creates very 
large non-Gaussian tails which contain the major fraction of particles 
 These tails were ignored in computation of vertical beam sizes 

 That resulted in a further development of mathematical model of gas 
scattering developed earlier at the Tevatron Run II time 

 The model is based on the integrodifferential equation describing 
particles scattering at the gas in a focusing structure of accelerator    


