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Abstract

We present analytic cooling and diffusion rates for a simplified model of coherent electron cooling

(CEC), based on a proton energy kick at each turn. This model also allows to estimate analytically

the rms value of electron beam density fluctuations in the ”kicker” section. Having such analytic

expressions should allow for better understanding of the CEC mechanism, and for a quicker analysis

and optimization of main system parameters. Our analysis is applicable to any CEC amplification

mechanism, as long as the wake (kick) function is available.

I. INTRODUCTION

Let us consider a 1D longitudinal coherent electron cooling (CEC) scheme as proposed

in Ref. [1–5]. Figure 1 presents a simplified schematic of CEC. The electron bunch picks up

density modulations from co-propagating protons in the ”Modulator” section. These density

modulations are then amplified by some mechanism in the ”Amplifier” section (blue).

The proton beam line (red) is arranged in such a way that when protons arrive at the

”Kicker” section, faster (slower) protons overcome (lag behind) a reference on-energy parti-

cle.

In our simplified model we will assume that at the end of the ”Kicker” section, the proton

energy experiences a kick as shown in Fig. 2. For convenience, we will call the proton energy

change dependence versus z the wake function—apart from a different normalization, it is

the same as the conventional longitudinal wake in accelerator physics. For simplicity, we will

assume that the proton’s longitudinal position, z, in the ”Kicker” section does not change and

is equal to z = R56δ, where δ = δp
p0

is the proton’s relative momentum deviation and R56 is

FIG. 1. A simplified schematic of CEC.
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the proton-line linear transfer matrix element from the end of the ”Modulator” section to the

”Kicker” section, i.e. z depends only on the proton momentum deviation. One can now see

from Fig. 2 that faster (slower) protons would lose (gain) energy after the ”Kicker” section

passage. The wake function, introduced above, is the main element in various modifications

FIG. 2. The electron beam density modulation due to a single proton (arb. units) and a corre-

sponding energy kick (in eV) after the ”Kicker” section as a function of the proton’s longitudinal

position (µm).

of coherent electron cooling. For the microbunched electron cooling (MBEC) concept it was

calculated in Refs. [5]; for the plasma-cascade (PCA) cooling concept, the wake function

can be found in Ref. [6]. In what follows, we will use the wake function calculated for an

MBEC cooler currently being designed for the electron-ion collider (EIC) (for details see

Ref. [7]) and shown in Fig 2. Table I gives an example of system parameters, used in our

calculations. We will discuss both the cooling rate and the diffusion rate due to neighboring

protons producing random kicks and, thus, creating a heating mechanism. Other diffusion

mechanisms will also be considered.

II. ENERGY KICK

To allow for analytical treatment of the problem, we will use the following model expres-

sion for the proton energy kick in the ”Kicker” section,

w(z) = −V0 sin

(
2π

z

z0

)
exp

(
− z2

σ02

)
, (1)

where we introduced three adjustable parameters: V0, the amplitude of the kick, z0, the

characteristic wavelength, and σ0, the characteristic width. The negative sign reflects the
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TABLE I. CEC system parameters (example)

Parameter Symbol Value Unit

Proton energy E0 275 GeV

Lorentz factor γ 290

Ring circumference C 3834 m

Revolution frequency f0 78.3 kHz

Number of protons per bunch Np 6.9 1010

Proton rms momentum spread δp 6.8 10−4

Proton rms bunch length σpz 6.0 cm

Number of electrons per bunch Ne 6.3 109

Electron rms bunch length σez 4.0 mm

Electron rms beam size (vertical) σey 0.6 mm

Electron rms beam size (horizontal) σex 0.6 mm

Kicker section length Lk 40 m

fact that the leading particle (z > 0) loses its energy after the kick. For example, the energy

kick, calculated using the system parameters in Table I and shown in Fig. 2, is presented

in Figure 3 (red curve) together with our model, Eq. (1) (blue curve). One can see from

Figure 3 that the proposed approximation slightly underestimates the far tales of the wake.

This does not affect the cooling rate but slightly underestimates the diffusion rate.

For the calculated energy kick, the following model parameters provide the best fit:

V0 = 28 eV, z0 = 6.7 µm, and σ0 = 3.0 µm. One can notice that at |z| > z0
2

the energy kick

changes its sign and cooling becomes anti-cooling. This determines the so-called cooling

range, the number of ”sigmas” n such that nR56δp = z0/2.

III. FOKKER-PLANCK EQUATION

To describe the evolution of the proton momentum distribution function, we will use the

Fokker-Planck equation in the following form:

∂ψ

∂t
+ ṡ

∂ψ

∂s
+ δ̇

∂ψ

∂δ
= − ∂

∂δ
(F (δ, s)ψ) +

1

2

∂

∂δ

(
D(δ, s)

∂ψ

∂δ

)
, (2)
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FIG. 3. The energy kick (eV) after the ”Kicker” section as a function of the proton’s longitudinal

position z = R56x (µm) with respect to the reference on-energy proton. The red curve is a

calculated wake, based on Ref. [8, Eq. C7]. The blue curve is the proposed approximation, Eq.

(1).

where ψ(δ, s, t) is the proton distribution function, δ is the relative momentum deviation, s

is the longitudinal coordinate in the lab frame (with respect to the bunch center), F (δ, s) =

f0w(R56δ, s)/E0 is the cooling force and D(δ, s) is the diffusion coefficient. The diffusion can

include various contributions, such as heating due to near-by protons, electron beam noise,

intra-beam scattering, etc. Eq. (2) corresponds to a bunched-beam case. We will transform

Eq. (2) to unperturbed longitudinal action-angle variables (J, φ) in order to analyse the

cooling and diffusion processes in terms of the longitudinal bunch emittance [9, 10],

δ =

√
2J

β
sinφ, s =

√
2Jβ cosφ, (3)

where β is the so-called longitudinal beta function, β = σpz/δp ≈ 88 m for the parameters

in Table I. If the characteristic cooling and diffusion times are longer than the synchrotron

oscillation period, it is reasonable to assume that the bunch distribution is continuously

matched to the shape of the trajectories in the (J, φ)-phase plane and that the distribution

function depends explicitly only on J and not on φ, that is ψ = ψ(J, t). This simplifies

considerably the left-hand side of Eq. (2),

∂ψ

∂t
= −

√
2β

∂

∂J

(√
JF̃ (J)ψ

)
+ β

∂

∂J

(
JD̃(J)

∂ψ

∂J

)
, (4)

where the cooling force F̃ is given by

F̃ (J) =
1

2π

∫ 2π

0

F (δ, s) sinφ dφ (5)
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and the diffusion term D̃ is given by

D̃(J) =
1

2π

∫ 2π

0

D(δ, s) sin2 (φ) dφ (6)

with δ and s given by Eq. (3). For a detailed derivation of Eqs. (5) and (6), see Ref. [10].

In its simplest form, the cooling force can be presented as F (δ, s) = −λδ, while the

diffusion as a constant D(δ, s) = D0. The Fokker-Planck equation becomes

∂ψ

∂t
− λ ∂

∂J
(J ψ) =

β D0

2

∂

∂J

(
J
∂ψ

∂J

)
. (7)

We will now multiply both sides of Eq. (7) by J and integrate in order to obtain the

evolution of the rms longitudinal emittance, εL =
∫∞
0
ψ JdJ (here we assume that ψ is

normalized by unity,
∫∞
0
ψ dJ = 1),

dεL
dt

+ λ εL =
β D0

2
. (8)

In a steady state (that is for d/dt = 0), the equilibrium rms emittance is

εL =
D0 β

2λ
. (9)

For a more realistic cooling force, we notice (see Table I) that the electron bunch is much

shorter than the proton bunch, σez � σpz. We will therefore use the following cooling force

approximation:

F (δ, s) = −f0V0
E0

sin

(
2π
R56δ

z0

)
exp

(
−R

2
56δ

2

σ02

)
exp

(
− s2

σ2
ez

)
(10)

with δ and s given by Eq. (3). This equation assumes that the electron bunch is placed at the

center of the proton bunch and the interaction happens only for protons with s ≈ 0, because

σez � σpz. Therefore, we can use the following approximation: exp
(
− s2

σ2
ez

)
≈
√
πσezδ(s),

where δ(s) is the Dirac delta function. Using Eq. (5), one can obtain the cooling force as a

function of action J :

F̃ (J) = −f0V0
E0

σez√
2πβJ

sin

(
2π
R56

z0

√
2J

β

)
exp

(
−R

2
56

σ02
2J

β

)
. (11)

IV. COOLING RATE

To obtain the cooling rate, τc, from the fokker-Plank equation, Eq. (4), we will evaluate

the following integral:

1

τc
=

√
2β

εL

∫ +∞

0

J
∂

∂J

(√
JF̃ (J)ψ

)
dJ, (12)
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where F̃ (J) is given by Eq. (11) and the distribution function

ψ =
1

εL
exp

(
− J
εL

)
. (13)

The resulting cooling rate is

1

τc
=
πf0V0
δpnE0

σez√
2σpz

(
1 +

z0
2

2n2σ02

)−3/2
exp

(
− π2

2n2 + z02/σ02

)
, (14)

where n is the cooling range, such that nR56δp = z0/2. Figure 4 shows the cooling time,

τc, as a function of the cooling range, n, for the CEC system parameters in Table I and

V0 = 28 eV, z0 = 6.7 µm, and σ0 = 3.0 µm. One can see that there is a shallow minimum

FIG. 4. Cooling time (in minutes) as a function of the cooling range n defined as nR56δp = z0
2 .

of about 60 minutes for n in the range 3.5 to 4.5. For example, choosing n = 3.7 results in

R56 = Z0/(2nδp) ≈ 1.3 mm. This value should be compared to the kinematic portion of the

R56 element. If the proton path length between the ”Modulator” and the ”Kicker” section

is L ≈ 100 m, the kinematic portion of the R56 element is L/γ2 ≈ 1.2 mm. Thus, the proton

beam line has to provide an additional 0.1 mm increase to the R56 matrix element. It also

means that the Kicker section cannot be too long as its length1 increases the effective value

of the R56 element. For n→∞, the cooling time increases linearly with n and the Eq. (14)

becomes: τc
−1 ≈ λ, as expected.

1 There are additional constraints on the Kicker section length, due to plasma oscillations in the electron

beam, for example.
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V. DIFFUSION RATE

The diffusion coefficient, D(δ, s), is usually a function of the momentum deviation, δ.

However, it was shown in Ref. [11] that in the case of stochastic cooling with a strong

Schottky band overlap, the diffusion coefficient due to random kicks from neighbouring

protons is a constant, i.e. independent of δ. The CEC method, having the typical frequencies

of c/z0 ≈ 45 THz, is in the regime of a strong Schottky band overlap. In this regime, the

diffusion coefficient at the center of the electron bunch can be written as

D0 =
〈(w(z)/E0)

2〉
T

, (15)

where the angular brackets 〈...〉 indicate averaging of random energy kicks from neighboring

ions, and T = 1/f0 is the revolution period in the ring. Taking into account that the number

of ions per unit length at the center of a Gaussian bunch is Np/(
√

2πσpz), we obtain

D0 = f0
Np√
2πσpz

V0
2

E0
2

∫ +∞

−∞

(
sin

(
2π

z

z0

)
exp

(
− z2

σ02

))2

dz. (16)

We can finally write

D0 =
Npf0V0

2

4E0
2

σ0
σpz

(
1− exp

(
−2π2σ0

2

z02

))
≈ Npf0V0

2

4E0
2

σ0
σpz

. (17)

As expected, the diffusion rate is independent of the cooling range n and is proportional

to the width of the kick, σ0, which can be viewed as the inverse band-width of the system.

Recalling that the electron bunch is much shorter than the proton bunch, Eq. (10), we can

write the diffusion coefficient for any longitudinal position, s, within the proton bunch as

D(s) = D0 exp

(
−2s2

σez

)
≈ D0

√
π

2
σezδ(s). (18)

After averaging over angle φ by using Eq. (6) we obtain

D̃ =
D0

2

σez
2σpz

. (19)

From Eq. (4) the evolution of the longitudinal rms emittance, εL is determined by

1

εL

dεL
dt

= − 1

τc
+
D̃β

εL
, (20)

with τc from Eq. (14) and D̃ from Eq. (19). For the CEC system parameters in Table I

and for V0 = 28 eV, z0 = 6.7 µm, and σ0 = 3.0 µm, the diffusion time is (D̃β/εL)−1 ≈ 660
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minutes, which is much greater than the cooling time for the same parameters and n = 3.7,

τc ≈ 62 minutes. This indicates that, in theory, the overall sum of cooling and diffusion rates

in Eq. (20) can still be increased by increasing the kick amplitude, V0. For the so-called

”optimal gain” [12] condition we have:

1

τc
=

2D̃β

εL
. (21)

From this we can obtain the optimal kick amplitude, Vopt, for maximum cooling:

Vopt =
4
√

2πE0δp
nNp

σpz
σ0

(
1 +

z0
2

2n2σ02

)−3/2
exp

(
− π2

2n2 + z02/σ02

)
. (22)

This yields Vopt ≈ 150 eV. With this optimal kick amplitude, the achievable cooling time

becomes 2τc ≈ 24 minutes (the factor of 2 is due to Eq. (21)). We note that only the

diffusion due to neighboring protons is taken into account in Eq. (22). Other diffusion

mechanisms can be added to analyze the effective cooling rate in Eq. (20).

VI. ELECTRON BEAM DENSITY FLUCTUATIONS DUE TO PROTONS

First, we can estimate the rms value of random energy kicks per turn due to diffusion

Eq. (17) for a proton at the center of the electron bunch. For the CEC parameters Table I,

the diffusion coefficient D0 ≈ 2.3 × 10−11 sec−1. The rms energy kick per one turn due to

diffusion can be written as

δErms = E0

√
D0T ≈ 26 keV. (23)

This random kick is due to other protons in the vicinity of a reference proton. This should

be compared to a cooling wake (kick) value of about 20 V (max) per turn as can be seen in

Fig. (3).

Let us estimate the rms electron beam density fluctuations, resulting from the superposi-

tion of incoherently-added wakes from neighbouring protons. First, we will use a simplified

single-wavelength density modulation model for a single proton with k = 2π/z0, a wave

vector of this modulation. In the electron rest-frame, we can use the Poisson’s electrostatics

equation (in Gaussian units):
dEz
dz′

= 4πene(z
′), (24)
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where e is the electron charge and z′ is the transformed rest-frame z coordinate (note that

Ez = E ′z). Using Eq. (24) for the calculation of the electron density perturbation we actually

replace electrons by uniformly charged thin slices and assume that the distance between the

slices is much smaller than their transverse size. A more accurate model of Gaussian slices

with elliptic cross-section and an arbitrary transverse size was used in Ref. [8].

From Eq. (24) we find the following electron density modulation amplitude due to a single

proton:

n′e =
kEz
4πγe

. (25)

The rest-frame electric field E ′z can be estimated as E ′z = Ez ≈ V0/(eLk). Thus, we obtain

for a single proton, the amplitude of the density modulation,

n′e ≈
kV0

4πγe2Lk
. (26)

The average over z′ of this density modulation is zero, 〈n′e〉 = 0, but the rms value is

non-zero: √
〈n′2e〉 ≈

kV0
4πγe2Lk

√
∆Np, (27)

where ∆Np is the number of protons in a sample, near a reference proton:

∆Np =
Npσ0√
2πσpz

. (28)

We finally arrive at an estimate for the rms electron beam density modulation:√
〈n′2e〉 ≈

kV0
4πγe2Lk

√
Npσ0√
2πσpz

. (29)

The maximum electron bunch density in the rest-frame is

n′e0 =
Ne√

(2π)3γσezσexσey
. (30)

For the parameters of Table I we obtain,√
〈n′2e〉
n′e0

≈ kV0σezσexσey
2e2Lk

√
Np

Ne

√√
2πσ0
σpz

≈ 0.15. (31)

Thus, a simplified estimate gives a 15% relative rms density fluctuations value in the electron

bunch, needed to support cooling in the presence of other protons2. Obviously, it’s not a

2 Eq. (24) treats the particles as charged sheets and thus overestimates their interaction at large distance.

A more accurate model of elliptic slices from Ref. [8] takes into account that the interaction is localized

at the distance ∼ σex/γ, σey/γ; it gives a larger value for the estimate of
√
〈n′2e〉/n′e0 that depends on the

cross section of the electron and proton beams.
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small number and may require a separate investigation. The maximum possible modulation

level can not exceed 100% and, thus, the maximum rms value should probably be limited

to 30% to allow for variations in excess of 2-3 sigmas. One might also notice that achieving

the optimal gain of V0 ≈ 150 eV may not be possible for the parameters of Table I. A more

detailed analysis, obtained by performing averaging of n2
e(z
′) with

ne(z
′) =

1

4πe2Lk

dw(z′)

dz′
, (32)

yields

√
〈n′2e〉 =

√
Np√

2πγσpz

∫ +∞

−∞
n2
e(z
′)dz′

=
V0

4πγe2Lk

√
Np

4σ0σpz

√
k2σ2

0 + 1− exp

(
−k

2σ2
0

2

)
.

(33)

Using Eq. (33) yields the relative rms density fluctuation of 13%.

VII. ELECTRON BEAM NOISE

In this section we estimate the electron beam shot-noise contribution to the diffusion

coefficient. Since the electron longitudinal charge density is similar to that of protons (see

Table I), we can estimate the electron shot-noise contribution to the diffusion to be similar to

the proton beam contribution, Eq. (17). This doubles the effective diffusion coefficient and

gives the effective diffusion time of (D̃β/εL)−1 ≈ 330 minutes, still much greater than the

cooling time, ≈ 60 minutes. One can see that exceeding the shot-noise value in the electron

beam by a factor of 2-3 is possible for the chosen parameters, before the electron beam noise

becomes a dominant diffusion factor. One has to remember, however, that doubling the

diffusion coefficient increases the rms electron beam density fluctuations by a factor of
√

2,

to over 20%. Thus, this may also become a limiting factor. For a more detailed calculation of

electron beam contributions to the diffusion rate, one needs to use the spectral power density

of the electron beam density fluctuations and then take into account the amplification section

to convert these density fluctuations to electric fields. This requires a separate investigation,

outside of the scope of this note.
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VIII. CONCLUSIONS

In this note, we considered a simplified cooling wake (kick) model, given by Eq. (1). This

model allows to derive analytic expressions for cooling and diffusion rates, as well as for the

electron beam rms density fluctuations. Having such analytic expressions should allow for

better understanding of the CEC mechanism, and for a quicker analysis and optimization

of main system parameters.

We would like to emphasize that even though we have used the wake calculated for the

MBEC amplification scheme, our analysis can be easily applied to other coherent cooling

techniques, for example, to the PCA concept, as long as the wake (kick) function, similar to

the one shown in Fig. 3, is available.
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