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Talk outline

® Neutrino physics and sterile neutrino searches

" The MicroBooNE experiment
= | ArTPC detector technology
= Physics analyses
m Applications of Deep Learning (DL) in MicroBooNE

= Machine learning/DL applications in accelerator operations



Neutrino flavors & oscillation

Neutrinos are created and annihilated as
eigenstates of the weak interaction (“flavors™):
3 flavors in Standard Model (e,u,T)

Unlike charged leptons, flavor = mass
eigenstate

= Each flavor is a superposition of 3 mass
eigenstates

Neutrinos can change flavor when propagating:

neutrino oscillation

Neutrino oscillation is defined by 6 parameters
" mixing angles 621, 813, 832

= squared mass differences Am212, Ams,2

= CP violating phase 0
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Neutrino flavors & oscillation

® Neutrino flavors & oscillation

baseline= 400 m

= 3-flavor neutrino oscillation paradigm . % I m i e g
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LSND anomaly

® Using stopped pion source

" [ow intrinsic've BG
= Neutrino energy: 10~55 MeV
= Baseline: 30 m

800 MeV proton beam from
LANSCE accelerator

‘ Water target

Qer beamstop

N

LSND Detector
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LSND (Liquid Scintillator Neutrino Detector) at Los Alamos

Phys. Rev. D 64, 112007 (2001)
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The MiniBooNE “Low energy excess”

" MiniBooNE experiment at FNAL
" mineral oil Cerenkov detector
® goal: to investigate the LSND anomaly
= neutrinos from Booster Neutrino Beam (BNB), ~700 MeV
= ~500 m baseline -> same L/E

Booster

magnetic horn  decay pipe ¢4 450 m dirt

detector
and target 50 m ‘90/5@
g



The MiniBooNE “Low energy excess”

= MiniBooNE result

m 4.60 excess of ve-like events in the 200-700 MeV region

B combined with LSND >60
B excess in both v and anti-v

arXiv: 1805.12028
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Limitations of Cerenkov detectors

= MiniBooNE detector: mineral oil Cerenkov
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The SBN program at FNAL

= Motivation
" Hints of non-standard neutrino oscillations (reactor, LSND anomalies etc)
" The MiniBooNE “low energy excess”
= Status
= Phase 1: MicroBooNE (in operation)
" Phase 2: SBND (under construction) and ICARUS (commissioning)
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MicroBooNE NuMI Data 2.4x10?° POT ~ —+— Beam-On Data (Stat.)
Out-of-Cryostat

[ "] Beam-Off Data
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[ Photon
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[ Electron
MC + Beam-Off
Stat. Uncertainty

Why LAFTPC?

= | ArTPC: SBN detector technology
m Merits of noble gas TPCs:
= highly-granular

0°< 0 <60°
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= very good spatial & energy resolution o ;
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e~ topology: Yy topology:

1) attached to vertex
2) MIP ionization

1) vertex “gap”
2) MIP x2

13cm

BNB DATA : RUN 5370 EVENT 1:227. MARCH 10, 2016.

BNB DATA : RUN 5360 EVENT 45. MARCH 8,



Why LArTPC?

= \Why Argon?
= Abundant (1% of atmosphere)
= Easily ionizable (~55,000 e/cm)
= pure Ar: high e mobility (long drift lengths) v scalability
= high scintillation yield (~40,000 photons/MeV) v/
" transparent to its scintillation
= affordabley

® Scalable technology a must for next-generation, large-scale neutrino
detectors (e.g. DUNE)
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The MicroBooNE experiment

= Observing on-beam neutrinos from BNB (~470m baseline) and off-beam
neutrinos from NuMI|

= Main scientific goals:
= Explore the MiniBooNE low energy excess (LEE)
" Measure v cross-sections on LAr |
= LArTPC R&D

= Detector
m 85t (active) LArTPC
= 3 readout wire planes w/ 3mm pitch
= 328 PMTs

= Since summer 2016: Cosmic Ray Tagger
= plastic scintillator strips in 2 xy layers

2.3 m

® cover top, bottom, and sides
= 85% coverage of muons




Working principle of LArTPCs

® Charged particles ionize Ar

= |onization e drift in electric field
towards anode plane
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Working principle of LArTPCs

® Charged particles ionize Ar

" |onization e drift in electric field towards anode plane
® Signal read out by 8256 wires on 3 wire planes
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Charge signal formation
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Charge signal formation

Run 3493 Event 41075, October 23", 2015

induction plane 1 induction plane 2 collection plane 2

nBooNE _

data

') candidate neutrino vertex
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m Data is recorded as 2D “images” of charge on wire vs. time:
projections of the 3D charged particle trajectories




Observing light in MicroBooNE

m Charged particles ionize Ar
u IsotropiC UV scintillation |Ight Light collection system
= Observed by photon detection system  records LAr scintillation

Sense Wires ) ) Light guide paddle  Optical unit
Ve %X e emma) [ 4

Liquid Argon TPC

Charged Particles

Cathode
Plane




Importance of light in LArTPCs

® Most beam spills empty, contain only cosmic rays (CRs)
® | ight data is an important handle for CR rejection
" Trigger: require PMT activity in time with beam=> drop trigger rate by factor x50

= Matching of TPC energy deposit to light data
= Reject TPC activity not consistent with beam-window PMT data

I Measured Cosmic Rate (Beam-Off)
¢« BNB Trigger Data (Beam-On) [4.51E18 POT] |4
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MicroBooNE Physics analyses

= MicroBooNE has multiple physics analysis groups using independent event
reconstruction methods (Pandora, Wire-Cell, DL)

m exploring new tools in this relatively new LArTPC technology
" independent analyses = robust physics results
= All groups use some Machine learning/Deep learning tools

® reconstructing neutrino daughter trajectories challenging in events

dominated by large CR background (surface detector)

" |mprove processing time and precision in an automated (non-human

supervised) reconstruction chain

= Mis-reconstruction affects efficiency, purity, particle kinematics, final state
particle content (the latter are difficult to model)

20



Deep Learning Analysis

" Deep Learning (DL) event reconstruction
= 2D image data format: suited for computer vision applications
= combines convolutional neural networks (CNNs) with standard algorithms

® First application of a CNN to MicroBooNE data showed promise
(JINST 12 (03), P03011 (2017) and Phys. Rev. D 99, 092001 (2019))

® since then have expanded use of DL tools & published several papers
= final goal: full 3D reconstruction chain with CNNs

= CNN development in conjunction with physics analysis

21



" To recognize an image, e.g. as a
cat, decompose an object into a
collection of small features

® Features composed of different
patterns, lines and colors

® Convolutional neural networks
(CNNs) often used

" |ocal connectivity

" same weights for each layer

" extract both local and global
features & “context”

22



Convolutional Neural networks

= Type of a deep neural network well-suited for image-type data analysis
= Versatile applications

= Core operation in a CNN is the convolutional filter: identifies the positions of patterns within
an image

= Dense: operates on all pixels

m Sparse: operates on non-zero pixels only (saves on time and memory)
= |n example below light and dark in output show where the pattern matches well

23

Filter bank (to be learned)

Feature maps



Neutrino candidate reconstruction flow in DL group

- CNN application

- Filling in gaps due to dead
electronics channels (InFill)
 Cosmic Ray h : Clustering and interaction labels in A
Identification )‘ \ 2D (sMask-RCNN) )
4 I ) g Tagging of energy deposits as
L Vertex finding ) _track-like or shower-like (SSNet)
p | ~ 3D space-point reconstruction
from 2D charge deposits (LarMatch)
3D track/shower
Reconstruction “Key point" identification ]
: | 1\ Clustering of 3D points

Neutrino Selection

[ Particle ID

J <——(Mu|tiple Particle ID in 2D ROI (MPID))

U

J

Legend

Q In use
Q Tool ready

In dev.
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Reconstructing dead Channel Information with Infill

MicroBooNE wire-plane images: multiple gaps due to unresponsive/noisy TPC ’ 1
channels

= problem for CR tagging and 3D track reconstruction: partial tracks

= InFill: a generative CNN that reconstructs trajectories in dead regions ~
" trained on data K. Mason

—

Y Plane — Cata N { Plane — Data Sl Y Plane — Data
Run 6370 . = un 6370 e Run 6370

Event 148( 0100 N “vent 148)100 c ~ Event 14800100
Network Irput Image N Network Output Image N _ True ADC Image
In Progress n Progress . In Progress

Network input:artificial gaps Network output Original




Infill Network performance

= |nFill performance on beam-off data
= 99% of pixels with charge predicted correctly <::| Important for trajectory reco
= charge match 1/4 of pixels

Fraction of Induction plane | Induction plane

oixels (%) 1 5 Collection plane

Within 2 ADC*
Within 10 ADC

Within 20 ADC

Binary Accuracy

*ADC: arbitrary unit of integrated charge. Intensity in 2D wire plane images 26



Cosmic ray tagging with sMask-RCNN

= Cosmic Ray background dominant in MicroBooNE data

J. Mills

= CR tagging: need to collect all pixels in 2D view
= sMask-RCNN: identifies 2D pixel clusters according to particle interaction

Raw image Clustering by interaction

MicroBooNE
Simulation
Preliminary

MicroBooNE
Simulation
Preliminary

—_

27
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Cosmic ray tagging with sMask-RCNN

» sMask-RCNN: identifies 2D pixel clusters according to particle interaction

Boxes Proposed (RPN) Boxes Classified (Classifier) Masks (Clustering FCN)

Step 1: Step 2: Step 3:
propose bounding box classify mask pixels

28



sMask-RCNN Example on data

Neutrino 0.98 ‘ ’
100 cm
1
Cosmic 0.9 ) Cosmic 1.00

{ Cosmic 1.00

MicroBooNE Data f |
Preliminary \

C .
Cos‘nrl)iccml’.rOb'OO

Cosmic 1.00 Cosmic 0.82 \

Run: 5589 Subrun: 34 Event: 1704 Cosmic 1.00

Cosmic 0.90
Cosmic 0.73
|

Cosmic 0.98

Beam-On data event. Selected as neutrino candidate by DL LEE analysis
Neutrino is correctly identified
Most CRs are correctly identified

Highly overlapping regions can be difficult (overlapping masks)
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sMask-RCNN Network performance

Sum|(Best Overlapping Prediction) x (Ground Truth) x (ADC Binary))
Sum|(Ground Truth) x (ADC Binary )]

Ef ficiency =

— G d Truth

Network performance round fru

estimated in terms of

Efficiency vs. Purity @ Prediction 1 s 75% of Ground Truth
@ Prediction 2 s 15% of Ground Truth

@ Efficiency of Groun@

Sum|(Prediction) x(Ground Truth) x (ADC Binary))

Sum|(Prediction) x (ADC Binary )| \

Ground Truth 1 For Every Simulated Interaction
Ground Truth, then take Maximum Purity

Purity =

— Ground Truth 2

s Prediction Mask - 30% of Mask
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sMask-RCNN Network performance

%
5‘ E"\caencyvsl’uﬂtyOOOQQ?QOl' g 1800 Mash Covarnge 007000004
= . ' 8 Entries 9400
g 0 Entries 9400 i 1600 Voan 5 648
£ Meanx  0.8441 - SidDev 0.1107
u 0.8 Meany  0.8585 \ 1400
"~ Std Dev x 0.05585 10
0.7/ 500evy 00511 1200 MicroBooNE
Tl Simulation
0 6: 1000 In Progress
. 5§ 800
0 4 600
T MicroBooNE s00
0.3 Simulation 0
0.2! In Progress 200
01 % 02 04 0.6 0.8 1
Fraction of Interactions Covered
0O 01 02 03 04 05 06 0.7 08 09 1 1

Purity

- o 65% of interactions covered
Mean efficiency at 84% at >90%

Mean purity at 85%
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Neutrino reconstruction: from 2D to 3D

Run 3493 Event 41075, October 23", 2015

induction plane 1 induction plane 2 collection plane 2 Data recorded as 2D images
of charge on wires vs time:
projections of 3D trajectory

nBooNE _

data

Three images for the three
wire planes

'y «— time (depth) direction ——

wire direction "
VT e To estimate neutrino energy, need to
i \ " reconstruct the 3D trajectories of daughter
o \ charged particles
e / .{-.'_:'.:'.:'.:'.:'.:'.:'_:Z:i:i:i:ﬁ:ﬁéiiiﬁziz’;:g e Requires matching of same-time charge in the
) 3L Q<pd'db 2D projections
\oeffﬁll / > e Challenging when multiple trajectories in the
| same time slice (e.g. cosmic rays & neutrinos)
™ [11 32

* Vertical tracks challenging: single time slice

Y wire plane waveforms



3D space-point reconstruction with LArMatch

= Qur solution: LArMatch algorithm. Image analysis approach
" (Generate possible wire-plane charge matches
= CNN scores matches between 0 (bad) and 1 (good)

= 3D space-point reconstructed from wire match

Same time window charge

Charge depositions on Induction plane 1 depositions on Collection plane




Development of LArMatch

= Novel technique

" First CNN application to reconstruct 3D points directly from 2D LArTPC input

= | ArMatch highlights

Takes advantage of sparsity of LArTPC data: sparse convolutions
Largely improved time and memory consumption w.r.t. dense networks
= applicable to large data (DUNE)

Competitive performance with other reconstruction frameworks
Starting point for a fully DL based 3D reconstruction

MICROBOONE-NOTE-1082-PUB, publication being prepared

34



LArMatch Example on data

3D space points generated with LArMatch. BNB On-beam data. Neutrino candidate
selected by MicroBooNE Deep Learning neutrino analysis (neutrino Boosted Decision
Tree score in [0.5,0.7] range)
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MicroBooNE
Preliminary 05

Color represents network score. Only showing points with score >0.5
Circles represent PMTs (brightness reflects amount of light observed)
Neutrino candidate (proton track + electron shower) successfully reconstructed 35



LArMatch Example on data

3D space points generated with LArMatch. BNB On-beam data. Neutrino candidate
selected by MicroBooNE Deep Learning neutrino analysis (neutrino Boosted Decision

Tree score in [0.5,0.7] range)
f !
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Color represents network score. Only showing points with score >0.5
Circles represent PMTs (brightness reflects amount of light observed)
Neutrino candidate (proton track + electron shower) successfully reconstructed 36



LArMatch Network performance

Estimating performance on cosmic ray + BNB neutrino simulation
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e Plotting distance from true 3D point for best-match* reconstructed points.

* O(90%) of reconstructed points are within 1 cm of truth, comparable to other algos
* This kind of precision possible thanks to LArTPC technology & CNN techniques

37
* Network outputs multiple predictions for each 3D point; keep only highest score



LArMatch Network performance: vertical tracks

= Vertical tracks challenging: all trajectory points fall within same time slice

Track Track, phi = [-1.64, -1.35]
S T =
5 180 — 0 o £ A B R
%é_ [ 105 . 05 ..... M lcr(i)BOQNE %105
g 160~ — 3!
2 F _ £ Preliminary T T T T
c : . o« T 104 .....................................................
g 120~ Preliminary
2 -
100f— o
80| - 10° - — o
- 107 ' :
60? : : : :
o = . = = e e
20 —
O: . — & 1 10
-3 -2 -1 0 1 2 3 0 5 10 15 20 25 30 35 40 45 50
azimuth angle (rad) distance to true triplet (cm)

Left: distance from true 3D point for best-match reconstructed points vs. azimuth
angle. Sample dominated by down-going CR tracks.

Right: Projection for vertical tracks. Majority or 3D points are within 5cm from truth
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Status of MicroBooNE LEE searches

= All analysis groups are working to finalize neutrino selections
= Demonstrated selections yielding high purity and efficiency in desired topology
" open data sample results showcased at Neutrino 2020

= Vigorous work on sideband samples and fake-data events: demonstrate robustness of
analyses

= Collaboration-wide discussions on statistical/model interpretations on-going
" Plan to release a series of LEE results very soon

T
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= v, CCQE (0.0) v, Res n° (0.2) . Off Vertex (0.4)

=y

w
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ve CCQE events selected by DL
LEE analysis (black) vs. stacked

| | | prediction (colored histograms)

e Run 1 open dataset
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ML and DL applications in accelerator physics

= A ot of effort at FNAL and elsewhere to adopt ML/DL techniques in beam operations
= DOE funding awarded to team led by Bill Pellico & Dr. Kiyomi Seiya
= \Why use ML
® Fast, automated reliable inference
® Can be run on unconventional hardware (FPGA) for flexible use
= Just some examples of uses at FNAL (inexhaustive list!)
= NuMI beam quality monitoring with a regression model (Athula Wickermasinghe)

= Real-time monitoring of superconducting magnets with a DNN (Duc Hoang et al.)

40


https://beamdocs.fnal.gov/AD-public/DocDB//ShowDocument?docid=8530
https://beamdocs.fnal.gov/AD-public/DocDB//ShowDocument?docid=8687

CNN application to beam operations

= Convolutional neural networks are very versatile
= Main strength: can correlate disparate sets of information

= Can imagine application of convolutional neural networks to 2D array-type
monitor data to:

m Correlate monitor data to beam condition/state; extract information from
data on different beam parameters

m e.g. correlate beam position/profile measurements to beam tuning
parameters & be able to make predictions

= | ive-time monitoring and anomaly detection

—>

beam trajectory

2D pixelated monitor data
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Understanding Beam status with CNNs

® Using 2D monitor array data, one can regress different parameters describing
the beam state

" Encoder extracts features
" Regression network predicts beam parameters
® Regression in 2D (or 3D if using multiple arrays): more powerful than 1D

)

O Outputs

>
—
J O oo O
J
/
y
Input <:> (:)
image Convolutional layers O
Full ~—
y Hidden layers
connected 42
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Understanding Beam status with CNNs (2)

® Recreating beam monitor data with a generative adversarial network (GAN)
® can be tested agains beam simulations to better understanding

® consists of two networks: a Generator, which creates fake data from noise
(e.g. Gaussian noise), and a Discriminator, which classifies data examples as

true or fake
= (G constantly trying to outsmart D, which is main driver for training
= conditional GAN: both G and D output constrained by additional condition

Condition

Input
Image

sample
(real) data

Wil LGN OLtw
\j

fake

real

MNIST training data

43

Condition Noise
Generator (fake) data



Detecting anomalies with Autoencoders

= Autoencoder: type of neural network designed to learn features from data in unsupervised
manner

= Does not rely on truth for training: no need for precise simulations, only “regular” state monitor data
" Network comprises two parts:

" Encoder: compresses data into a lower-dimension representation which captures correlations and
Interactions, disregards noise

m Decoder: reconstructs the information to produce output (which mirrors the input)
= \When fed anomalous input, the network loss will greatly degrade => indication of issues
" |mplementation on FPGA makes it possible to run in real-time (O(microsec) inference)

28x28x1

Output
Image

14x14x32 14x14x32

/ 152 sz //
/ TxTx64 \ T
W Ix3x128 1000« 33028 W
U '

l Conv3 ; Reshape [
Conv2 stride =2 hIl DeConv3
stride=2 < LU stride=2

Flatten IFC

—

DeConv2
stride=2 stride=2

DeConvl
stride=2 44




Summary

= SBN program aims to probe BSM physics with LArTPC detectors
= MicroBooNE operational, SBN & ICARUS coming soon

= MicroBooNE employs ML/DL techniques in many stages of neutrino event
reconstruction.

m pioneering work: 1st application of CNN to LArTPC data
= jmage augmentation, CR tagging, 3D reconstruction
m performance tested on data & MC
= tuned to improve physics analysis
= ML/DL application in accelerator operation
= growing effort at FNAL and elsewhere
= fast and reliable automated beam monitoring/tuning
= CNNSs could be an interesting new avenue
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Noise reduction and signal deconvolution
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arXiv:1705.07341
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After Noise Filtering
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FACIAL RECOGNITION

Deep-learning neural networks use layers of increasin

CO n VO I Uti O n a | n etWO rkS complex rules to categorize complicated shapes such as faces.

Layer 1: The
computer
identifies pixels
of light and dark.

= Consider the task of facial recognition

Layer 2: The
computer learns to
identify edges and
simple shapes.

= Begin with image pixels (layer 1)

= Start by applying convolutions on simple
patterns (layer2)

= Find groups of patterns by applying
convolutions on feature maps (layer 3)

= Do this multiple times

= Eventually the network learns to identify
groups of patterns as faces

Layer 3: The computer
learns to identify more
complex shapes and
objects.

Layer 4: The computer
learns which shapes
and objects can be used
to define a human face.




LArMatch Network

m Sparse CNN feature generator + MLP classifier
" Feed charge deposited on all 3 planes: helps reconstruct vertical tracks

= Generates a probability score for all geometrically possible combinations of charge
on the 3 planes (“wire triplets”)

= 3D space-points generated from wire triplets using detector geometry

[ Feature vector generator J [ Multi-layer perceptron }
classification network
All layers in
feature gen
network use
' ' sparse
submanifold
convolution
operators
Classifier
“STEM” RESNET  Eeature output Fully-connected
3x3 sparse 20 layers 1x1 sparse RelLU
BN, RelLU sparse Output: 16 dim 2 hidden layers o

feature vector 1 output



Network training

= Trained on 40,000 BNB + CR simulated events
= | earning rate updated at 150,000 iterations

= 50,000 triplet examples per iteration

m Stopped training after 3.75 epochs

loss

" |oss & accuracy plateaued

" no overtraining observed
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LArMatch Example on Simulation

3D space points generated with LArMatch. Cosmic ray + BNB neutrino simulation.

MicroBooNE
Simulation

Preliminary
\/

Color represents network score. Plotting all generated 3D points. Ghost (fake) points
and unresponsive regions feature lower scores, trajectory ‘cores’ have high scores
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LArMatch Network performance

Estimating performance on cosmic ray + BNB neutrino simulation

Shower
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Bad triplet rejection Bad triplet rejection

Plotting good point* efficiency vs bad point™ rejection as a function of network score.

Network score reflects actual goodness of reconstructed points

*good point: within 1 cm from true 3D point
**pbad point: >1 cm from true 3D point
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ldentifying particle content in RO

®» DL LEE analysis looking for a specific event topology:
1 lepton + 1 proton as products of a neutrino CCQE interaction

MPID on Simulation
Example I: LlBOO

le — 1proton

Target topology:
1e1p event

Y Plane
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ldentifying particle content in RO

= DL LEE analysis looking for a specific event topology:
1 lepton + 1 proton as products of a neutrino CCQE interaction

MPID on Simulation
Example II: MBOO

le — 1y — lproton

Irreducible background:

events with mis-reconstructed gammas
- gamma below energy threshold

- detached from vertex

- overlapping with e shower

- efc.
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ldentifying particle content in RO

= MPID: CNN that labels particle content in ROI

MPID on Simulation
Example [,IBOO

le — 1proton

MPID on Simulation
Example |I: l,lBOO

le — 1y — lproton

e Y H T + proton e Y H Jz'i proton

0.98 0.1 0.02 0.03 0.97 063 098 0.02 0.08 0.97 -



MPID Validation on data

. HEE v, CCQE (314.21) BNB Other (10.18) BN EXTBNB (6.96) ». I v, CCQE (314.21) BNB Other (10.18) BN EXTBNB (6.96)
vy MEC (48.47) BN BNB Off Vertex (19.00) MC Statistical Error vy, MEC (48.47) Bl BNB Off Vertex (19.00) MC Statistical Error
insi . BNB 5E19 (478 insi | . BNB 5E19 (478
| W v, Res 0 (15.03) ve Intrinsic Overlay (1.36) i (478) »| mmm v, Res m® (15.03) ve Intrinsic Overlay (1.36) i (478)
BN Dirt (0.55) B Dirt (0.55)
v, Res m*/~ (50.32) vy Res m*/~ (50.32)

MicroBooNE
Preliminary

MicroBooNE | |
Preliminary [ \ —

Events in 5e19 POT
Events in 519 POT
- & s

=

(a2l ' ! 777, Systematical Error (Flux & Cross Section) (s ‘ 777, Systematical Error (Flux & Cross Section)
h | »‘ Proton Score " " .' .‘ Muon Score |

Plotting proton score and muon score for selected CCQE muon neutrino
candidates in data (black points). Good agreement with stacked prediction (color)

Neutrino candidate selection defined by DL LEE group.
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Light collection system of MicroBooNE

TPB-coated plate

= 32 x 8 in PMTs (Hamamatsu) behind TPB-coated acrylic plates

= Role of TPB: shift LAr scintillation wavelength to 430 nm
(in PMT sensitive region)

= PMT analog signals->splitters->
preamp & shaper (60ns)->digitized at 64MHz

140

-- Argon emission spectrum (arb)

-- TPB emission spectrum (arb)
— Pure TPB VUV absorption efficiency (%)
— Borosilicate glass transmittance (1mm, %)
— R5912-02 w. platinum underlayer QE (%)

120

100

80

60

40

100 200 300 2100 500 600 700 800
Wavelength / nm
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LAr scintillation

= | Ar: very bright scintillator (order of 10k photons/ MeV of deposited energy)
= Two main mechanisms of scintillation
= 128 nm UV photons released at de-excitation

Self-trapped exciton luminescence de-excitation

Excitation self-trapping

Recombination luminescence

excimer

recombination

lonization
58
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LAr scintillation

= Excited states (excimers): Aro* core with bound electron

= Singlet state 2,1
» Triplet state 5,3 LAr is transparent to its scintillation!

= At de-excitation both states emit a 128 nm wavelength UV photon
" Single state: decay time ~6 ns (prompt/fast light)
" Triplet state: decay time ~1600 ns (late/slow light)

E Fo - ~An example from: -
S qor L. ort Decay Bindlen) Component 2010, JINST 5 P06003 . .
‘9’ Sl WATP collaboration) Prompt:late light ratio is dE/dx
E : : dependent
® S ~25:75 for MIP
This can in theory be used for PID

e
- —EmAR

2000 3000 4000 6000 7000 8000 9000 10000
Time (ns) 59
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= (Gain can vary with
= HV instabilities
= |ight intensity
" Temperature fluctuations

® | have been in charge of PMT gain
calibration since 2018

® Perform measurements
® Maintain database
" |mplementation in optical reconstruction

= PMT gain measurements in MicroBooNE
m ~200 kHz of SPE noise (origin unknown)

= Collect O(1 PE) pulses

= Multi-PE fit to pulse amplitude and area
distributions: extract gain constants

PMT Gain Calibration In Microboone
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PMT gain Gain measurements
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= Early on saw up to 30% deviation in gaiﬁasfefor some PMTs

" implemented procedural changes to minimize instabilities end of Run1
= data/MC calibration important to ensure stability
= First time measuring PMT gain evolution in LArTPC over prolonged operation
= MICROBOONE-NOTE-1064-TECH
® valuable lessons for future LArTPC experiments 61
" helps isolate & investigate other sources of light instability



PMT gain measurements with Single PE pulses

" Pure single-PE (SPE) case: pulse shape const (for each PMT) so area and

amplitude correlated

" Area & amplitude multi-PE fits independent, but measured gains are

correlated

= Fitting procedure robust

Amplitude Gain

Amplitude vs. Area PMT Gain

x10°
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- 200
- Entries 2.674835e+07
18— o B Mean x 126.6
- Mean y 20.79 100
16— Std Dev x 5.605
- 1 1 Std Dev y 1.075
o 110 120 130 140 _ 150 160 °

Area Gain
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PMT gain calibration performance

= Simulated PE: NsimPE = A/20 ADC (constant gain assumed)
= Calibrated PE: NrecoPE = A/gA

® (Gain calibration minimizes PMT-to-PMT differences
= Can measure remaining light yield instabilities independently

1.4 | MicroBooNE Data
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