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Highly segmented detectors

Benefits:

• Position Resolution
– pixel pitch ~ 1/√N

• Energy resolution:
– CDET ~ 1/N

– IDARK ~ 1/N

– pulse shaping time ~ N

• Rate capability
– pileup ~ 1/N

• “Small pixel” effect
– improve energy resolution in 

detectors with poor hole 

transport
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N=1 N=9 N=25 N=49

Drawbacks:

• Interconnect density
– density ~ N

• Electronics channel count
– cost ~ N

– power ~ N
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The Peak Detector Derandomizer ASIC Architecture

• New architecture for efficient readout of multichannel detectors
• Self-triggered and self-sparsifying

• Simultaneous amplitude, time, and address measurement for 32 input channels

• Set of 8 peak detectors act as derandomizing analog memory

• Rate capability improvement over present architectures

• Based on new 2-phase peak detector combined with Quad-mode TAC
• High absolute accuracy (0.2%) and linearity (0.05%), timing accuracy (5 ns)

• Accepts pulses down to 30 ns peaking time, 1.6 MHz rate per channel

• Low power (2 mW per channel)

SWITCH

32:8

LOGIC
INPUTS

AMPLITUDE

MUX

PD

TAC

MATRIX
TIME

ADDRESS

READ REQUEST
VTH

FULL, EMPTY

EMBEDDED 

MEMORY

32 COMPARATORS

P. O’Connor, G. De Geronimo, A. Kandasamy,  Amplitude and time measurement ASIC with 

analog derandomization: first results, IEEE Trans. Nucl. Sci. 50(4), pp. 892-897 (Aug. 2003). 
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CMOS PD Using Two-Phase Configuration

Write phase

• conventional peak detector

• M1: unidirectional current 

source

• voltage on CH includes op-

amp errors (offset, CMRR)

+

-in

CH

M1

out

voff

A

Read phase

• same op-amp re-used as 

unity-gain buffer

• same CM voltage

• op-amp errors cancel

• enables rail-to-rail 

sensing

• provides good drive 

capability

+

-in

CH

M1

out

voff

G. De Geronimo BNL U.S. Pat. 6,512,399

Parameter: Value: PDD-1 (PDD-2)
Technology 0.35 um CMOS DP4M

Supply voltage 3.3V

Input voltage range 0.3 - 3.0 V

Minimum pulse width 500 (50) ns

Absolute accuracy 0.20%

Linearity 0.05%

Droop rate 250 mV/s

Timing accuracy 5 ns

Power dissipation 3.5 (2.0) mW/chan
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PDD ASIC waveforms
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Charge-shared events (e.g. pad and strip MWPCs)

• occur in neighboring channels

• different amplitude (typically)

• more than 2 channels (often)

The PDD for Simultaneous Events

Simultaneous events = events that cross the threshold within a time window of about 10ns

Coincident detection (e.g. PET)

• similar amplitudes

• typically only two channels

• usually non-neighboring

Vth
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Matrix cell schematics
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Vth

TOT > TOT(A) expected

A

TOT = TOT(A) expected TOT > TOT(A) expected

Pulse to be rejected Pulses acceptable 

peaks are separate
Pulses acceptable 

The PDD for High Rate

At High Rate the probability of piled up events increases

Is it possible to extract an information from the signals to properly identify and 

reject corrupted data?

Time-Over-Threshold
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Time-Over-Threshold Measurement for pile-up rejection 

ToT vs. Peak Amplitude Characteristic

for a pulse from a 5th order complex poles semi-Gaussian shaper
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Test setup
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Time-Over-Threshold Measurement for pile-up rejection

Experiment Setup

• Array of 1mm x 1mm silicon diodes, built on a fully-
depleted 400um high-resistivity wafer and cooled at ~ -54 ˚C

• 8keV X-ray monochromatic collimated 10umx10um beam 

from NSLS focused on the center of one pixel

• FE with 2us peaking time

FWHM = 0.25 keV

Pulse Height Spectrum when the events rate is 

equal to 400 Counts/s 

No pile up effects are visible

A 3rd order harmonic from the monochromator

is present and saturates the FE
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Time-Over-Threshold Measurement for pile-up rejection

3D Pulse Height Spectrum as a function of the ToT
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Time-Over-Threshold Measurement for pile-up rejection

3D Pulse Height Spectrum as a function of the ToT

Pulse Height Spectrum 

when the events rate is 

equal to 22 kCounts/s

Pile up effects are visible
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Time-Over-Threshold Measurement for pile-up rejection 

Before The Correction After The Correction

The Pile-Up Rejection Algorithm
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Time-Over-Threshold Measurement for pile-up rejection 

Pulse Height Spectra Comparison 
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Z reconstruction in 3D CZT and material non uniformities compensation

 

- +-- ++

3D Position Sensitive Detector (3DPSD)
Prof. Zhong He (University of Michigan)

3D Position Sensitive Detector (3DPSD)
Prof. Zhong He (University of Michigan)

• Combines:

• small-pixel effect

• depth sensing 

• Multiple signals per event:

• cathode (energy and timing)

• anodes (energy and timing)

• Correction:

• on voxel-by-voxel basis (volumetric pixel)

FWHM = 0.93%

(6.16 keV)

662 keV

FWHM = 0.93%

(6.16 keV)

662 keV

Spectrum: 1,2, and 3-pixel events

Individual correction for each of 4800 voxels in 

1.5 x 1.5 x 1cm3 crystal

F. Zhang et al., 2005 
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320 Voxel has been defined each level along z has an associated C/A ratio value. Single event position has been identified using the C/A ratio. 

Gain correction factors, has been calculated from the Single events spectra along Z compensating for every single Pixel column. 

Multiple events z position has been identified calculating an equivalent c/a ratio from the electron drift time of the first anode event that identifies the first 

interaction point.

Z reconstruction in 3D CZT and material non uniformities compensation
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Z reconstruction in 3D CZT and material non uniformities compensation
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Z reconstruction in 3D CZT and material non uniformities compensation
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Z reconstruction in 3D CZT and material non uniformities compensation
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Front-End ASIC for the Readout of XAMPS detectors

to be used in the LCLS XRPP instrument  

A. Dragone, P. Rehak, J.F. Pratte, P. O’Connor, P. Siddons (PI)
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A way to study of stimulated changes in the structures of molecules and condensed matter systems

The X-Ray Pump and Probe (XRPP) Instrument

Changes will typically be stimulated by a short 

pulse of optical laser light (orange), and observed 

using x-ray diffraction (blue). 

Femtosecond-level synchronization between the 

optical laser and the LCLS x-ray pulse will allow 

sub-picosecond time resolution.

Examples of studies with this instrument: 

•Dynamics of photo-induced phase transitions: Optical manipulation of solids can lead to photo-

induced phase transitions on the ultra fast time scale. These materials possess potential technological 

importance as ultra fast optical signal processing materials. 

•Dynamics of photoactive proteins: The variability and efficiency of proteins make them powerful 

molecular foundries. To understand how a protein functions at a mechanistic level of detail, it is 

necessary to measure in real time the nuclear motions that accompany its function. 

•Dynamics of photo-initiated electron transfer reactions: Electron transfer reactions reside at the 

center of many important chemical, biological, and technological processes, including photosynthesis 

and the operation of photovoltaics for solar energy conversion.
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XRPP Specifications

Resolution (8 keV): 0.5 photons (FWHM) → 500 e- rms

Dynamic range :                 104 photons               → 2.2 × 107 e- (3.5 pC)

Dissipated power : < 2 mW / channel

Pixel + line capacitance :   2-20 pF including the line (depend on the capacitive   

gate control) – optimized for 15pF

Processing time : < 8 µs (1µs-8µs to be synchronized with the LCLS 

beam period of 120Hz)

1.7163010000

0.55201000

0.15160100

0.055010

0.015151

0.00550.1

Photon 

Resolution 

FWHM

ENC

e- rms

N 

photons

Statistical fluctuations in e- h+ pair generation in Si
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XAMPS array

1024 X 1024

64 16 times

FEXAMPS ASIC 

14 bit ADC

16 times

LVDS

Capacitive
gates control

1024

System Architecture

FPGA based 
control system

1024

Transfer
gates control
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X-rays Active Matrix Pixel Sensor  (XAMPS)

Pixel 

Capacitive
gates connection row

Transfer
gates connection row 

Read Out
column

• Monolithic devices built on fully-depleted high-resistivity silicon provide simplest 
structure

Switching mechanism integrated with sensor

Small pixels in principle possible (no on-pixel amps or small 3T design)

row-by-row parallel readout by off-sensor amplifiers

N readout channels instead of N x N, modular readout from edge of detector by a 
few (~16) small ASICs

IBM version

BNL version
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D SS

D SS

Capacitive

Gate

Capacitive

Gate

Transfer

Gate

Transfer

Gate

Pixel axis

of symmetry

Substrate at 1200V

Substrate at 1200V

Pixel axis

of symmetry

Pixel with full charge 3.5pC

Pixel with no charge

Capacitive

Gate

Capacitive

Gate

Transfer

Gate

Transfer

Gate

Cg

Cb

XAMPS charge storing: Potentials

To store the charge Cg must be big! Cg=7.5pF
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D
SS

Capacitive

Gate

Capacitive

Gate

Transfer

Gate

Transfer

Gate

Pixel axis

of symmetry

Substrate at 1200V

Charges falling into the source

D SS

Capacitive

Gate

Capacitive

Gate

Transfer

Gate

Transfer

Gate

Pixel axis

of symmetry

Substrate at 1200V

Charge transferring to the FE

To the 

FE

XAMPS charge transferring and the KTC noise

If Cpixel is big its kTC noise has to be considered.

For a:  

Cpixel ≈ 7.5 pF → √kTCpixel ≈ 1060 e-
If instead:

Cpixel ≈ 1 pF → √kTCpixel ≈ 400 e-

Capacitive Gates Control is fundamental

If the transfer gate is closed when the 

charge fall into the diffusion region since there 

is no more charge in the Cg the KTC will be 

due to an equivalent much smaller capacitance.

Note: the Cg sees in series a Cb of about 100fF 

to the boundary regions, thus to move the 

capacitive gates of a row (1024 connected 

together) we don’t need huge drivers.
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ASIC Architecture

τ
τ

DR= 10000 ph. @ 8keV

Cpixel ~ 15Pf

DRout=1.5V            Cf=4.5pF               KTCnoise = 850e
-

14bit ADC required so that 1LSB = 1.2 ph 

The natural approach for the a fast readout of a detector in witch the charge

is collected in synchronous with an external signal would be a classic:

Time Variant Gated Integrator System

The requested Input Dynamic 

Range is to large!
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Cpixel

Q

Cline

t = 0

τs = 220ns

τw

Q(t)

i(t)

Cf

Qp
Vref

Pump

Control Logic

+ N Counter

S/H

Qp = Qmax/N

Cf = Qp/DRout

Working principle:

To meet the required resolution over the entire dynamic range a 0 balance method is applied: the dynamic range is 

divided in N ranges each one corresponding to a charge Qp=Qmax/N. When a charge larger than Qp is presented to the 

input a charge pump is activated to remove fixed amount of charge equal to Qp until a residual smaller than Qp remains 

stored in the feedback capacitor Cf. The number of charge quanta Qp removed by the pump are counted and the 

corresponding digital value is presented at the output representing the most significant bits of the final A/D conversion (for 

N=8 we have 3 bit).

The residual charge in the feedback capacitor is then sampled according to a CDS scheme, presented at the output and 

converted with a 14bit ADC (total of 14+3=16bit).

Charge Pump or 0 Balance Method
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ASIC Architecture

Analog Residual Output

Digital Output

A-D
mux

serial
readout
controller

Slot Control (SC)
CLOCKS

configuration registers

SERIAL INTERFACE

BIAS

16

CP Channels 16
PIXEL INPUT 

Thr. Global DAC

RST

Auxiliary 
Output Controller

A-D
mux

Test Pulser (?) 

3
16

Analog Residual Output

Digital Output

A-D
mux

16

CP Channels 16
PIXEL INPUT 

A-D
mux

3
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           Time

0s 0.2us 0.4us 0.6us 0.8us 1.0us 1.2us 1.4us 1.6us 1.8us 2.0us

V(S1:3) V(C2:1) V(C3:1)

-2.0V

0V

2.0V

4.0V

SEL>>

S(I(I2)) S(I(I1)) S(-I(C5)) S(-I(C3)) S(I(C2))

-4.0p

0

4.0p

Preamp output (saturating)

Pump removed charge

Preamp input voltage

Charge temporary accumulated 

on the total input capacitance

Charge stored on the

feedback capacitor

DAC output (pumping charge Qp quanta)

Reset Phase

Example of the circuit behavior in response to 2 subsequent full dynamic impulse of charge (worst case) saturating the preamplifier

Simulation Result
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An estimate of the ENCopt considering the series noise and the parallel components common to the proposed solutions:

Optimized for fixed power of 0.5mW, Cin of 15pF and assuming a 2nd order low pass filtering and CDS (Wopt=1.5mm).
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Sw and Sp are the series and parallel unilateral noise spectral densities respectively
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Time Domain Noise Analysis Results: System with CDS

Tm = Measurement Time

Tg = Acquisition Time Slot

Tr = Reset Time
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ASIC Timing Diagram

           Time           Time
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Floor plan
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Thank you very much for your attention.


